9,467 research outputs found

    The Complexity of Power-Index Comparison

    Get PDF
    We study the complexity of the following problem: Given two weighted voting games G' and G'' that each contain a player p, in which of these games is p's power index value higher? We study this problem with respect to both the Shapley-Shubik power index [SS54] and the Banzhaf power index [Ban65,DS79]. Our main result is that for both of these power indices the problem is complete for probabilistic polynomial time (i.e., is PP-complete). We apply our results to partially resolve some recently proposed problems regarding the complexity of weighted voting games. We also study the complexity of the raw Shapley-Shubik power index. Deng and Papadimitriou [DP94] showed that the raw Shapley-Shubik power index is #P-metric-complete. We strengthen this by showing that the raw Shapley-Shubik power index is many-one complete for #P. And our strengthening cannot possibly be further improved to parsimonious completeness, since we observe that, in contrast with the raw Banzhaf power index, the raw Shapley-Shubik power index is not #P-parsimonious-complete.Comment: 12 page

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Memory-Based Learning: Using Similarity for Smoothing

    Full text link
    This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.Comment: 8 pages, uses aclap.sty, To appear in Proc. ACL/EACL 9

    Manipulating the Quota in Weighted Voting Games

    No full text
    Weighted voting games provide a popular model of decision making in multiagent systems. Such games are described by a set of players, a list of players' weights, and a quota; a coalition of the players is said to be winning if the total weight of its members meets or exceeds the quota. The power of a player in such games is traditionally identified with her Shapley--Shubik index or her Banzhaf index, two classical power measures that reflect the player's marginal contributions under different coalition formation scenarios. In this paper, we investigate by how much the central authority can change a player's power, as measured by these indices, by modifying the quota. We provide tight upper and lower bounds on the changes in the individual player's power that can result from a change in quota. We also study how the choice of quota can affect the relative power of the players. From the algorithmic perspective, we provide an efficient algorithm for determining whether there is a value of the quota that makes a given player a {\em dummy}, i.e., reduces his power (as measured by both indices) to 0. On the other hand, we show that checking which of the two values of the quota makes this player more powerful is computationally hard, namely, complete for the complexity class PP, which is believed to be significantly more powerful than NP
    • …
    corecore