7 research outputs found

    A Formal Framework for Probabilistic Unclean Databases

    Get PDF
    Most theoretical frameworks that focus on data errors and inconsistencies follow logic-based reasoning. Yet, practical data cleaning tools need to incorporate statistical reasoning to be effective in real-world data cleaning tasks. Motivated by empirical successes, we propose a formal framework for unclean databases, where two types of statistical knowledge are incorporated: The first represents a belief of how intended (clean) data is generated, and the second represents a belief of how noise is introduced in the actual observed database. To capture this noisy channel model, we introduce the concept of a Probabilistic Unclean Database (PUD), a triple that consists of a probabilistic database that we call the intention, a probabilistic data transformator that we call the realization and captures how noise is introduced, and an observed unclean database that we call the observation. We define three computational problems in the PUD framework: cleaning (infer the most probable intended database, given a PUD), probabilistic query answering (compute the probability of an answer tuple over the unclean observed database), and learning (estimate the most likely intention and realization models of a PUD, given examples as training data). We illustrate the PUD framework on concrete representations of the intention and realization, show that they generalize traditional concepts of repairs such as cardinality and value repairs, draw connections to consistent query answering, and prove tractability results. We further show that parameters can be learned in some practical instantiations, and in fact, prove that under certain conditions we can learn a PUD directly from a single dirty database without any need for clean examples

    Extracting and Cleaning RDF Data

    Get PDF
    The RDF data model has become a prevalent format to represent heterogeneous data because of its versatility. The capability of dismantling information from its native formats and representing it in triple format offers a simple yet powerful way of modelling data that is obtained from multiple sources. In addition, the triple format and schema constraints of the RDF model make the RDF data easy to process as labeled, directed graphs. This graph representation of RDF data supports higher-level analytics by enabling querying using different techniques and querying languages, e.g., SPARQL. Anlaytics that require structured data are supported by transforming the graph data on-the-fly to populate the target schema that is needed for downstream analysis. These target schemas are defined by downstream applications according to their information need. The flexibility of RDF data brings two main challenges. First, the extraction of RDF data is a complex task that may involve domain expertise about the information required to be extracted for different applications. Another significant aspect of analyzing RDF data is its quality, which depends on multiple factors including the reliability of data sources and the accuracy of the extraction systems. The quality of the analysis depends mainly on the quality of the underlying data. Therefore, evaluating and improving the quality of RDF data has a direct effect on the correctness of downstream analytics. This work presents multiple approaches related to the extraction and quality evaluation of RDF data. To cope with the large amounts of data that needs to be extracted, we present DSTLR, a scalable framework to extract RDF triples from semi-structured and unstructured data sources. For rare entities that fall on the long tail of information, there may not be enough signals to support high-confidence extraction. Towards this problem, we present an approach to estimate property values for long tail entities. We also present multiple algorithms and approaches that focus on the quality of RDF data. These include discovering quality constraints from RDF data, and utilizing machine learning techniques to repair errors in RDF data

    Optimization of scaled probabilistic cleaning methods

    No full text
    corecore