24 research outputs found

    Evolving Gene Regulatory Networks with Mobile DNA Mechanisms

    Full text link
    This paper uses a recently presented abstract, tuneable Boolean regulatory network model extended to consider aspects of mobile DNA, such as transposons. The significant role of mobile DNA in the evolution of natural systems is becoming increasingly clear. This paper shows how dynamically controlling network node connectivity and function via transposon-inspired mechanisms can be selected for in computational intelligence tasks to give improved performance. The designs of dynamical networks intended for implementation within the slime mould Physarum polycephalum and for the distributed control of a smart surface are considered.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1303.722

    Controlling complex networks: How much energy is needed?

    Full text link
    The outstanding problem of controlling complex networks is relevant to many areas of science and engineering, and has the potential to generate technological breakthroughs as well. We address the physically important issue of the energy required for achieving control by deriving and validating scaling laws for the lower and upper energy bounds. These bounds represent a reasonable estimate of the energy cost associated with control, and provide a step forward from the current research on controllability toward ultimate control of complex networked dynamical systems.Comment: 4 pages paper + 5 pages supplement. accepted for publication in Physical Review Letters; http://link.aps.org/doi/10.1103/PhysRevLett.108.21870

    Construction of probabilistic boolean network for credit default data

    Get PDF
    In this article, we consider the problem of construction of Probabilistic Boolean Networks (PBNs). Previous works have shown that Boolean Networks (BNs) and PBNs have many potential applications in modeling genetic regulatory networks and credit default data. A PBN can be considered as a Markov chain process and the construction of a PBN is an inverse problem. Given the transition probability matrix of the PBN, we try to find a set of BNs with probabilities constituting the given PBN. We propose a revised estimation method based on entropy approach to estimate the model parameters. Practical real credit default data are employed to demonstrate our proposed method.published_or_final_versio

    Identification of control targets in Boolean molecular network models via computational algebra

    Get PDF
    Motivation: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. Experimentally, node manipulation requires technology to completely repress or fully activate a particular gene product while edge manipulations only require a drug that inactivates the interaction between two gene products. Results: This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network.Comment: 12 pages, 4 figures, 2 table

    Bayesian Spam Detection

    Get PDF
    Spammers always find new ways to get spammy content to the public. Very commonly this is accomplished by using email, social media, or advertisements. According to a 2011 report by the Messaging Anti-Abuse Working Group roughly 90% of all emails in the United States are spam. This is why we will be taking a more detailed look at email spam. Spam filters have been getting better at detecting spam and removing it, but no method is able to block 100% of it. Because of this, many different methods of text classification have been developed, including a group of classifiers that use a Bayesian approach. The Bayesian approach to spam filtering was one of the earliest methods used to filter spam, and it remains relevant to this day. In this paper we will analyze 2 specific optimizations of Naive Bayes text classification and spam filtering, looking at the differences between them and how they have been used in practice. This paper will show that Bayesian filtering can be simply implemented for a reasonably accurate text classifier and that it can be modified to make a significant impact on the accuracy of the filter. A variety of applications will be explored as well

    On optimal control policy for Probabilistic Boolean Network: a state reduction approach

    Get PDF
    BACKGROUND: Probabilistic Boolean Network (PBN) is a popular model for studying genetic regulatory networks. An important and practical problem is to find the optimal control policy for a PBN so as to avoid the network from entering into undesirable states. A number of research works have been done by using dynamic programming-based (DP) method. However, due to the high computational complexity of PBNs, DP method is computationally inefficient for a large size network. Therefore it is natural to seek for approximation methods. RESULTS: Inspired by the state reduction strategies, we consider using dynamic programming in conjunction with state reduction approach to reduce the computational cost of the DP method. Numerical examples are given to demonstrate both the effectiveness and the efficiency of our proposed method. CONCLUSIONS: Finding the optimal control policy for PBNs is meaningful. The proposed problem has been shown to be ∑ p 2 - hard . By taking state reduction approach into consideration, the proposed method can speed up the computational time in applying dynamic programming-based algorithm. In particular, the proposed method is effective for larger size networks.published_or_final_versio

    Transcriptional network growing models using motif-based preferential attachment

    Get PDF
    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs – i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent “building blocks” of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacteriumEscherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties
    corecore