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Abstract—In this article, we consider the problem of con-
struction of Probabilistic Boolean Networks (PBNs). Previous
works have shown that Boolean Networks (BNs) and PBNs have
many potential applications in modeling genetic regulatory
networks and credit default data. A PBN can be considered
as a Markov chain process and the construction of a PBN is
an inverse problem. Given the transition probability matrix
of the PBN, we try to find a set of BNs with probabilities
constituting the given PBN. We propose a revised estimation
method based on entropy approach to estimate the model
parameters. Practical real credit default data are employed
to demonstrate our proposed method.

Keywords-Boolean Networks; Probabilistic Boolean Net-
works; Inverse Problem; Transition Probability Matrix;

I. INTRODUCTION

In this article, we focus on the problem of construction
of Probabilistic Boolean Networks (PBNs). It is well known
that Boolean Networks (BNs) [12], [13] and PBNs have a
lot of applications in the field of modeling genetic regulatory
networks [14], [15], [16] and credit default data [11]. BN,
as a deterministic model, was first proposed by Kauffman
[12], [13]. Later, Shmulevich extended the BN model to a
stochastic setting, PBNs [14], [15]. A PBN can be regarded
as a Markov chain process. Both construction and control of
PBNs are important issues and they have been well studied
in [3], [4]. However, the construction of a PBN is an ill-
posed inverse problem. This means that it may have many
solutions or no solution. Our goal is to identify a set of BNs
with probabilities constituting the given PBN based on the
given transition probability matrix of the PBN. We propose a
revised estimation method integrating with entropy approach
to estimate parameters of the model. Furthermore, numerical
examples are given to demonstrate the effectiveness and
efficiency of our proposed method by utilizing practical real
credit default data.
The investigation of the relationship between correlated

defaults of different industrial sectors and business cycles
has become an important challenge in financial risk, es-
pecially after the financial credit crisis in 2007-08. Thus,
a number of infectious models [5], [6], [7], [8] and mul-
tivariate Markov chain models [17] have been proposed

to tackle the problem. PBN approach was first proposed
by Gu et al. [11] to study the correlated defaults in a
credit default data set. Using the credit default data, they
formulate a PBN model for explaining the default structure
and making reasonably good predictions of joint defaults in
different sectors. The key idea is to decompose the transition
probability matrix of the PBN inferred from the real data
into a weighted average of several deterministic BNs, which
contain useful information about business cycles. It is well
known that given an initial state, a BN will eventually enter
into a cycle of states, called attractor cycle or limit cycle.
Thus, the business cycle can be described by using such limit
cycles. Furthermore, heuristic algorithm have been proposed
to solve this inverse problem effectively [11]. In this article,
we shall modify the algorithm and show that our proposed
algorithm is more efficient and better results can be achieved.

II. INTRODUCTION TO BOOLEAN NETWORKS (BNS)
AND PROBABILISTIC BOOLEAN NETWORKS (PBNS)
In this section, we give a brief introduction to Boolean

Networks (BNs) and Probabilistic Boolean Networks (PB-
Ns).

A. Boolean Networks
BNs are deterministic models proposed by Kauffman

[12], [13]. BN models are popular mathematical model for
formulating genetic regulatory networks. In a BN, the genes
are regarded as vertices and each vertex has two possible
states: 0 (not expressed) and 1 (expressed). The output
(target vertex) of each gene is determined by several genes
called its input genes by using a Boolean function. A BN
is said to be well defined if its input vertices and their
corresponding Boolean functions are also given.
Generally speaking, a BN G(V, F ) is represented by a set

of vertices
V = {v1, v2, . . . , vn}

and a set of Boolean functions

F = {f1, f2, . . . , fn}.

Here we have fi : {0, 1}n → {0, 1}. And we define vi(t) to
be the state of vertex i at time t, taking 0 or 1. The rules of
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States v1(t) v2(t) f(1) f(2)

1 0 0 1 1
2 0 1 1 0
3 1 0 1 1
4 1 1 0 0

Table I
THE TRUTH TABLE OF A BN.

the network of vertices can be represented by the Boolean
functions:

vi(t+ 1) = fi(v(t)), i = 1, 2, . . . , n.

The Boolean vector

v(t) = (v1(t), v2(t), . . . , vn(t))

can take any possible states in the Gene Activity Profile
(GAP) set

S = {(v1, v2, . . . , vn)
T : vi ∈ {0, 1}}.

We give an example of a two-vertex BN and it is described
in Table 1.
There are four states in the BN and they are

(0, 0), (0, 1), (1, 0) and (1, 1). One may label them by 1, 2, 3
and 4. We note that if the current state of the network is 1,
then the network will go to State 4 in the next step (with
probability one) and vice versa. If the current state is 2, the
network will go to State 3 in the next step (with probability
one). Eventually, the BN will go into the cycles of two states:
(0, 0) (State 1) and (1, 1) (State 4).
The network dynamics of the BN (truth table) can be

represented by using a Boolean transition probability matrix,
we call it a BN matrix, as follows:

B =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 1 0 0
1 0 1 0

⎞
⎟⎟⎠ . (1)

The matrix B is a column stochastic matrix, each column
sum is one. We remark that there is a one-to-one relation
between a BN (truth table) and its corresponding BN matrix.
It is straightforward to see that for a given initial state, a
BN will eventually evolve into a cycle of states called its
attractor cycle.

B. Probabilistic Boolean Networks
Unavoidably, data used for inferring a BN may have

significant level of noise, therefore it is more appropriate and
desirable to employ a stochastic model. In [14], [15], [16],
the concept of a BN, a deterministic model, is extended to a
PBN, a probabilistic model. The main idea can be explained
as follows. For each of the network vertices, we allow more
than one Boolean function to be associated with it. We
also assume that there is selection probability distribution
associate with the Boolean functions. We remark that the

dynamics (transitions) of a PBN can be investigated by using
Markov chain theory [2].
To extend a BN to a stochastic model, for each vertex vj

in a PBN, instead of allowing only one Boolean function,
we assume that there are a number of Boolean functions
f
(j)
i (i = 1, 2, . . . , l(j)) to be selected for determining the
next state of the gene vj . The probability of selecting f

(j)
i

to be the Boolean function is assumed to be c(j)i and clearly
we have

0 ≤ c
(j)
i ≤ 1 and

l(j)∑
i=1

c
(j)
i = 1 for j = 1, 2, . . . , n.

Let fi be the ith possible realization and

fi = (f
(1)
i1

, f
(2)
i2

, . . . , f
(n)
in

), 1 ≤ ij ≤ l(j), j = 1, 2, . . . , n.
(2)

If the selection process of the Boolean functions fij for
each gene j is an independent process, then the probability
of getting the BN having Boolean functions

(fi1 , fi2 , . . . , fin)

is given by

qi1i2···in =

n∏
j=1

c
(j)
ij

.

For the underlying PBN, there are N =
∏n

j=1 l(j) different
possible BN realizations. The transition process of the
network states forms a Markov chain process. If we let a
and b be any two states in S, then the transition probability
is given by

P {v(t+ 1) = a | v(t) = b} =∑N

i=1 P {v(t+ 1) = a | v(t) = b, the ith BN is selected} · qi.

If we let

qi = qi1i2···in and i = i1 +

n∑
j=2

(
(ij − 1)(

j−1∏
k=1

l(k))

)

then it can be shown that the transition probability matrix
of the Markov chain can be written as

A =

N∑
i=1

qiAi (3)

where Ai is the BN matrix of the ith BN and qi is the
selection probability.

III. CONSTRUCTION OF PBN
In this section, we first introduce the problem of construc-

tion of PBNs, then present a revised heuristic construction
algorithm. PBN has achieved many attention as it can be
used to model genetic regulatory networks and credit default
data. Ching et al. [3] proposed algorithms of generating
PBNs from a given transition probability matrix A which
can be written as the sum of the BN matrices Ai as in Eq.
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(3). The construction problem itself is known to be an ill-
posed inverse problem owing to the fact that there are many
possible solutions or no solution.

A. The Inverse Problem
Given a transition probability matrix A of size 2n × 2n

(n is the number of genes), we assume the following
representation:

A =
M∑
i=1

qiAi + ε.

Here {Ai}
M
i=1 is a set of BNs and qi is the corresponding

selection probability of Ai and ε is the residual part of A.
One may regard Ai as the major component of the transition
probability matrix A associated with a weighting of qi. The
residual ε is the noise for the transition probability matrix
A and ||ε||F shall be sufficiently small.
In [3], the construction was formulated as the following

minimization problem:

min
qi

{
−

M∑
i=1

qi log qi

}

subject to the constraints in Eq. (3) and also
M∑
1

qi = 1 and qi ≥ 0.

The inverse problem has been shown to have an unique
solution [1], [18], however, the computational cost is huge.
Therefore heuristic algorithms based on optimizing the en-
tropy have been proposed to better address the problem [3],
[9], [11].

B. The Heuristic Algorithms
The following algorithm in Table 2, we call it “Uniform”

which has been proposed in [3] and also adopted in [11] to
solve the problem with LIMIT and THRESHOLD being 0.
The algorithm is allowed to iterate for a fixed number of

times (say for example 1000), and we compute and record
the best entropy of solution q obtained. Furthermore, we
suggest to set a “LIMIT” for the residual of the PBN and
also a “THRESHOLD” level for the selection probability.
These can both avoid the algorithm from constituting of BNs
with too small selection (not significant) probabilities. Most
importantly, we suggest to modify (*) in the above algorithm
by

pkij =
[Rk]

α
ji

[Rk]α1i + [Rk]α2i + . . .+ [Rk]αmi

with α > 1. It should be noted that max{pkij} increases as
α increases. In our numerical experiments, we adopt

LIMIT = 0.001,THRESHOLD = 0.0001, α = 2.

We shall call our newly revised algorithm as “Quadratic”.

Step 0: Set R1 = A, k = 0, (initial condition)
Input LIMIT and THRESHOLD,
Step 1: k := k + 1
Step 2: We assume in the ith column of matrix Rk,
there are totally m non-zero entries
[Rk]1i, [Rk]2i, . . . , [Rk]mi.
Then we define the probability of choosing [Rk]ji to be pkij
and pkij =

[Rk]ji
[Rk]1i+[Rk]2i+...+[Rk]mi

−−(∗).
After choosing entries based on the probablity defined above,
assume the concerned entries are given by
[Rk]k1,1, [Rk]k2,2, . . . , [Rk]k2n ,2n ,
we choose the smallest entry qk from [Rk]ki,i(i = 1, . . . , 2n).
Check: If qk < THRESHOLD, go to Step 5.
Then we define the following BN matrix:
Ak = [ek1,1, . . . , ek2n ,2n ].
Here ej,i is the unit column vector whose jth entry is 1
for i = 1, . . . , 2n.
Step 3: Rk+1 = Rk − qkAk

Step 4: If ||Rk+1||F < LIMIT go to Step 5,
otherwise go to Step 1.

Step 5: M = k and A =
M∑
k=1

qkAk.

Table II
THE HEURISTIC ALGORITHM ([3], [11]).

IV. NUMERICAL RESULTS
In this section, we present some numerical results of

applying the proposed revised algorithm presented in Section
3 to the PBN construction problem. We employ real default
data extracted from the figures in [10]. The default data
come from four different sectors including consumer sector,
energy sector, media sector and transportation sector. We
can see the default data taken from [10] in Table 3. All
the data sets are quarterly (88 quarters) time series on the
number of defaults in the captured sectors. To construct a
PBN, we need to consider binary data: 0 representing having
no default observed and 1 stands for at least one default. In
[11], they only consider 4 possible combinations among the
4 sectors. Here we also present the results for the case of 4
sector, respectively.

Sectors Total Defaults
Consumer 1041 251
Energy 420 71
Media 650 133

Transport 281 59

Table III
THE DEFAULT DATA (TAKEN FROM [10]).

Figure 1 presents the optimal entropy values obtained
by QUADRATIC and UNIFORM against the number of
iterations in all the five cases. From the numerical results, we
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can see that the “optimal” entropy values obtained by our
Quadratic method are small (better) in most cases. Figure
2 shows the solutions (the accumulated probabilities from
the largest to the smallest) obtained by both methods. It has
been shown that our method can produce solution with larger
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Figure 2

weighting as the curve is more “concave”. The dashed lines
and text labels on the plots in Figure 2 show the proportion
captured by the first eight BNs. From these labels we can
see that Quadratic method outperforms by capturing at least
85% using eight BNs. From the perspective of computational
times, Table 4 has shown that our proposed algorithm is
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Table IV
COMPUTATIONAL TIME IN SECONDS

Quadratic Uniform
3-sector Consumer-Energy-Media 2.0 4.0
3-sector Consumer-Energy-Transport 5.0 6.0
3-sector Consumer-Media-Transport 3.0 4.0
3-sector Energy-Media-Transport 5.0 5.0
4-sector 6.0 8.0

more efficient.

V. CONCLUSION

The effect of control variables LIMIT and THRESHOLD
can reduce both running time and storage used for iteration
computation. Meanwhile, the proportion of all BNs captured
by our algorithm is higher than 98% (The sum of all
probabilities in a test). Since we are dealing with mostly very
sparse matrices, the “Quadratic” algorithm actually enhances
the probability of non-zero entries, i.e., larger numbers
having larger probabilities are chosen in the comparison
to the “Uniform” algorithm. This helps us efficiently in
picking up the “dominant” BNs in each iteration and hence
further reduces running time and the number of BNs used to
approximate. Our proposed revised method outperform the
other methods in terms of the numerical results [11].
However, this “Enhance” effect is very closely related to

the distribution of non-zero entries in the columns of the
transition matrix. The more sparse the matrix is, the better
the effect will be.
As a further research issue, we shall study the effect of the

parameters, “LIMIT, “THRESHOLD” and α, on the overall
performance of the revised algorithm. We shall also develop
theory for the selection of these parameters.
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