981,143 research outputs found

    O(log2k/loglogk)O(\log^2k/\log\log{k})-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm

    Get PDF
    In the Directed Steiner Tree (DST) problem we are given an nn-vertex directed edge-weighted graph, a root rr, and a collection of kk terminal nodes. Our goal is to find a minimum-cost arborescence that contains a directed path from rr to every terminal. We present an O(log2k/loglogk)O(\log^2 k/\log\log{k})-approximation algorithm for DST that runs in quasi-polynomial-time. By adjusting the parameters in the hardness result of Halperin and Krauthgamer, we show the matching lower bound of Ω(log2k/loglogk)\Omega(\log^2{k}/\log\log{k}) for the class of quasi-polynomial-time algorithms. This is the first improvement on the DST problem since the classical quasi-polynomial-time O(log3k)O(\log^3 k) approximation algorithm by Charikar et al. (The paper erroneously claims an O(log2k)O(\log^2k) approximation due to a mistake in prior work.) Our approach is based on two main ingredients. First, we derive an approximation preserving reduction to the Label-Consistent Subtree (LCST) problem. The LCST instance has quasi-polynomial size and logarithmic height. We remark that, in contrast, Zelikovsky's heigh-reduction theorem used in all prior work on DST achieves a reduction to a tree instance of the related Group Steiner Tree (GST) problem of similar height, however losing a logarithmic factor in the approximation ratio. Our second ingredient is an LP-rounding algorithm to approximately solve LCST instances, which is inspired by the framework developed by Rothvo{\ss}. We consider a Sherali-Adams lifting of a proper LP relaxation of LCST. Our rounding algorithm proceeds level by level from the root to the leaves, rounding and conditioning each time on a proper subset of label variables. A small enough (namely, polylogarithmic) number of Sherali-Adams lifting levels is sufficient to condition up to the leaves

    Model-checking branching-time properties of probabilistic automata and probabilistic one-counter automata

    Full text link
    This paper studies the problem of model-checking of probabilistic automaton and probabilistic one-counter automata against probabilistic branching-time temporal logics (PCTL and PCTL^*). We show that it is undecidable for these problems. We first show, by reducing to emptiness problem of probabilistic automata, that the model-checking of probabilistic finite automata against branching-time temporal logics are undecidable. And then, for each probabilistic automata, by constructing a probabilistic one-counter automaton with the same behavior as questioned probabilistic automata the undecidability of model-checking problems against branching-time temporal logics are derived, herein.Comment: Comments are welcom

    Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems

    Get PDF
    Larsen and Skou characterized probabilistic bisimilarity over reactive probabilistic systems with a logic including true, negation, conjunction, and a diamond modality decorated with a probabilistic lower bound. Later on, Desharnais, Edalat, and Panangaden showed that negation is not necessary to characterize the same equivalence. In this paper, we prove that the logical characterization holds also when conjunction is replaced by disjunction, with negation still being not necessary. To this end, we introduce reactive probabilistic trees, a fully abstract model for reactive probabilistic systems that allows us to demonstrate expressiveness of the disjunctive probabilistic modal logic, as well as of the previously mentioned logics, by means of a compactness argument.Comment: Aligned content with version accepted at ICTCS 2016: fixed minor typos, added reference, improved definitions in Section 3. Still 10 pages in sigplanconf forma

    Duplicate Detection in Probabilistic Data

    Get PDF
    Collected data often contains uncertainties. Probabilistic databases have been proposed to manage uncertain data. To combine data from multiple autonomous probabilistic databases, an integration of probabilistic data has to be performed. Until now, however, data integration approaches have focused on the integration of certain source data (relational or XML). There is no work on the integration of uncertain (esp. probabilistic) source data so far. In this paper, we present a first step towards a concise consolidation of probabilistic data. We focus on duplicate detection as a representative and essential step in an integration process. We present techniques for identifying multiple probabilistic representations of the same real-world entities. Furthermore, for increasing the efficiency of the duplicate detection process we introduce search space reduction methods adapted to probabilistic data

    Confluence Reduction for Probabilistic Systems (extended version)

    Get PDF
    This paper presents a novel technique for state space reduction of probabilistic specifications, based on a newly developed notion of confluence for probabilistic automata. We prove that this reduction preserves branching probabilistic bisimulation and can be applied on-the-fly. To support the technique, we introduce a method for detecting confluent transitions in the context of a probabilistic process algebra with data, facilitated by an earlier defined linear format. A case study demonstrates that significant reductions can be obtained

    Calibrating Generative Models: The Probabilistic Chomsky-Schützenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Planning in probabilistic domains using a deterministic numeric planner

    Get PDF
    In the probabilistic track of the IPC5 - the last International planning competitions - a probabilistic planner based on combining deterministic planning with replanning - FF-REPLAN - out performed the other competitors. This probabilistic planning paradigm discarded the probabilistic information of the domain, just considering for each action its nominal effect as a deterministic effect
    corecore