9,440 research outputs found

    Control and Communication Protocols that Enable Smart Building Microgrids

    Full text link
    Recent communication, computation, and technology advances coupled with climate change concerns have transformed the near future prospects of electricity transmission, and, more notably, distribution systems and microgrids. Distributed resources (wind and solar generation, combined heat and power) and flexible loads (storage, computing, EV, HVAC) make it imperative to increase investment and improve operational efficiency. Commercial and residential buildings, being the largest energy consumption group among flexible loads in microgrids, have the largest potential and flexibility to provide demand side management. Recent advances in networked systems and the anticipated breakthroughs of the Internet of Things will enable significant advances in demand response capabilities of intelligent load network of power-consuming devices such as HVAC components, water heaters, and buildings. In this paper, a new operating framework, called packetized direct load control (PDLC), is proposed based on the notion of quantization of energy demand. This control protocol is built on top of two communication protocols that carry either complete or binary information regarding the operation status of the appliances. We discuss the optimal demand side operation for both protocols and analytically derive the performance differences between the protocols. We propose an optimal reservation strategy for traditional and renewable energy for the PDLC in both day-ahead and real time markets. In the end we discuss the fundamental trade-off between achieving controllability and endowing flexibility

    Incentive Design for Direct Load Control Programs

    Full text link
    We study the problem of optimal incentive design for voluntary participation of electricity customers in a Direct Load Scheduling (DLS) program, a new form of Direct Load Control (DLC) based on a three way communication protocol between customers, embedded controls in flexible appliances, and the central entity in charge of the program. Participation decisions are made in real-time on an event-based basis, with every customer that needs to use a flexible appliance considering whether to join the program given current incentives. Customers have different interpretations of the level of risk associated with committing to pass over the control over the consumption schedule of their devices to an operator, and these risk levels are only privately known. The operator maximizes his expected profit of operating the DLS program by posting the right participation incentives for different appliance types, in a publicly available and dynamically updated table. Customers are then faced with the dynamic decision making problem of whether to take the incentives and participate or not. We define an optimization framework to determine the profit-maximizing incentives for the operator. In doing so, we also investigate the utility that the operator expects to gain from recruiting different types of devices. These utilities also provide an upper-bound on the benefits that can be attained from any type of demand response program.Comment: 51st Annual Allerton Conference on Communication, Control, and Computing, 201

    Demand Side Management inside a Smart House

    Get PDF
    The upgraded traditional grid, also known as the smart grid, that incorporates information and communications technologies will change not only electricity production but also consumption. In combination with Photovoltaics (PV) and electrical storage, demand side management (DSM) is a promising solution for net-zero energy building (NZEB). NZEB will be able to produce energy for its own needs and also feed a surplus back to the grid. In scientific papers, it has already been proven that the use of electrical energy storage can improve the power quality and store variable production of renewable energy. Smart meters are a step forward because they enable a two-way communication between a customer and a utility. In this way, it will be possible to monitor consumption and electricity prices on the market in real time. Furthermore, this will enable the consumer to turn off devices that are large loads, or let the DSM system known as load management do its job such to reduce energy consumption in a given period. DSM will automatically switch off a big load in a manner that does not disturb user comfort. Smart appliances at the end-user level such as the Internet protocol (IP) addressable appliance controlled by external signals from the utility or end-user will enable load shifting to off-peak periods. Solar radiation is prevalent everywhere and can be used to generate electricity at the point of consumption, thereby reducing the losses in transmission. Only one hour of solar radiation is sufficient to cover the annual consumption; this shows that the future of low-carbon energy production lies in the use of solar radiation

    Secure Communication Architecture for Dynamic Energy Management in Smart Grid

    Get PDF
    open access articleSmart grid takes advantage of communication technologies for efficient energy management and utilization. It entails sacrifice from consumers in terms of reducing load during peak hours by using a dynamic energy pricing model. To enable an active participation of consumers in load management, the concept of home energy gateway (HEG) has recently been proposed in the literature. However, the HEG concept is rather new, and the literature still lacks to address challenges related to data representation, seamless discovery, interoperability, security, and privacy. This paper presents the design of a communication framework that effectively copes with the interoperability and integration challenges between devices from different manufacturers. The proposed communication framework offers seamless auto-discovery and zero- con figuration-based networking between heterogeneous devices at consumer sites. It uses elliptic-curve-based security mechanism for protecting consumers' privacy and providing the best possible shield against different types of cyberattacks. Experiments in real networking environment validated that the proposed communication framework is lightweight, secure, portable with low-bandwidth requirement, and flexible to be adopted for dynamic energy management in smart grid

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    Architectures for smart end-user services in the power grid

    Get PDF
    Abstract-The increase of distributed renewable electricity generators, such as solar cells and wind turbines, requires a new energy management system. These distributed generators introduce bidirectional energy flows in the low-voltage power grid, requiring novel coordination mechanisms to balance local supply and demand. Closed solutions exist for energy management on the level of individual homes. However, no service architectures have been defined that allow the growing number of end-users to interact with the other power consumers and generators and to get involved in more rational energy consumption patterns using intuitive applications. We therefore present a common service architecture that allows houses with renewable energy generation and smart energy devices to plug into a distributed energy management system, integrated with the public power grid. Next to the technical details, we focus on the usability aspects of the end-user applications in order to contribute to high service adoption and optimal user involvement. The presented architecture facilitates end-users to reduce net energy consumption, enables power grid providers to better balance supply and demand, and allows new actors to join with new services. We present a novel simulator that allows to evaluate both the power grid and data communication aspects, and illustrate a 22% reduction of the peak load by deploying a central coordinator inside the home gateway of an end-user
    corecore