13,705 research outputs found

    Polar codes for degradable quantum channels

    Get PDF
    Channel polarization is a phenomenon in which a particular recursive encoding induces a set of synthesized channels from many instances of a memoryless channel, such that a fraction of the synthesized channels becomes near perfect for data transmission and the other fraction becomes near useless for this task. Mahdavifar and Vardy have recently exploited this phenomenon to construct codes that achieve the symmetric private capacity for private data transmission over a degraded wiretap channel. In the current paper, we build on their work and demonstrate how to construct quantum wiretap polar codes that achieve the symmetric private capacity of a degraded quantum wiretap channel with a classical eavesdropper. Due to the Schumacher-Westmoreland correspondence between quantum privacy and quantum coherence, we can construct quantum polar codes by operating these quantum wiretap polar codes in superposition, much like Devetak's technique for demonstrating the achievability of the coherent information rate for quantum data transmission. Our scheme achieves the symmetric coherent information rate for quantum channels that are degradable with a classical environment. This condition on the environment may seem restrictive, but we show that many quantum channels satisfy this criterion, including amplitude damping channels, photon-detected jump channels, dephasing channels, erasure channels, and cloning channels. Our quantum polar coding scheme has the desirable properties of being channel-adapted and symmetric capacity-achieving along with having an efficient encoder, but we have not demonstrated that the decoding is efficient. Also, the scheme may require entanglement assistance, but we show that the rate of entanglement consumption vanishes in the limit of large blocklength if the channel is degradable with classical environment.Comment: 12 pages, 1 figure; v2: IEEE format, minor changes including new figure; v3: minor changes, accepted for publication in IEEE Transactions on Information Theor

    Private Quantum Coding for Quantum Relay Networks

    Full text link
    The relay encoder is an unreliable probabilistic device which is aimed at helping the communication between the sender and the receiver. In this work we show that in the quantum setting the probabilistic behavior can be completely eliminated. We also show how to combine quantum polar encoding with superactivation-assistance in order to achieve reliable and capacity-achieving private communication over noisy quantum relay channels.Comment: 15 pages, 3 figures, Journal-ref: Lecture Notes in Computer Science, Vol. 7479, pp. 239-250. Springer-Verlag, 2012, presented in part at the 11th Intl. Conference on Quantum Communication, Measurement and Computing (QCMC2012), v2: minor formatting change

    Public Quantum Communication and Superactivation

    Full text link
    Is there a meaningful quantum counterpart to public communication? We argue that the symmetric-side channel -- which distributes quantum information symmetrically between the receiver and the environment -- is a good candidate for a notion of public quantum communication in entanglement distillation and quantum error correction. This connection is partially motivated by [Brand\~ao and Oppenheim, arXiv:1004.3328], where it was found that if a sender would like to communicate a secret message to a receiver through an insecure quantum channel using a shared quantum state as a key, then the insecure quantum channel is only ever used to simulate a symmetric-side channel, and can always be replaced by it without altering the optimal rate. Here we further show, in complete analogy to the role of public classical communication, that assistance by a symmetric-side channel makes equal the distillable entanglement, the recently-introduced mutual independence, and a generalization of the latter, which quantifies the extent to which one of the parties can perform quantum privacy amplification. Symmetric-side channels, and the closely related erasure channel, have been recently harnessed to provide examples of superactivation of the quantum channel capacity. Our findings give new insight into this non-additivity of the channel capacity and its relation to quantum privacy. In particular, we show that single-copy superactivation protocols with the erasure channel, which encompasses all examples of non-additivity of the quantum capacity found to date, can be understood as a conversion of mutual independence into distillable entanglement.Comment: 10 page

    Additive Extensions of a Quantum Channel

    Full text link
    We study extensions of a quantum channel whose one-way capacities are described by a single-letter formula. This provides a simple technique for generating powerful upper bounds on the capacities of a general quantum channel. We apply this technique to two qubit channels of particular interest--the depolarizing channel and the channel with independent phase and amplitude noise. Our study of the latter demonstrates that the key rate of BB84 with one-way post-processing and quantum bit error rate q cannot exceed H(1/2-2q(1-q)) - H(2q(1-q)).Comment: 6 pages, one figur

    The quantum capacity with symmetric side channels

    Get PDF
    We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity quantum communication when assisted by a family of channels that have no capacity on their own. This family of assistance channels, which we call symmetric side channels, consists of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few entanglement measures that is monotonic under local operations with one-way classical communication (1-LOCC), but not under the more general class of local operations with classical communication (LOCC).Comment: 10 pages, 4 figure

    Quantum Channel Capacities with Passive Environment Assistance

    Full text link
    We initiate the study of passive environment-assisted communication via a quantum channel, modeled as a unitary interaction between the information carrying system and an environment. In this model, the environment is controlled by a benevolent helper who can set its initial state such as to assist sender and receiver of the communication link. (The case of a malicious environment, also known as jammer, or arbitrarily varying channel, is essentially well-understood and comprehensively reviewed.) Here, after setting out precise definitions, focussing on the problem of quantum communication, we show that entanglement plays a crucial role in this problem: indeed, the assisted capacity where the helper is restricted to product states between channel uses is different from the one with unrestricted helper. Furthermore, prior shared entanglement between the helper and the receiver makes a difference, too.Comment: 14 pages, 13 figures, IEEE format, Theorem 9 (statement and proof) changed, updated References and Example 11 added. Comments are welcome
    • …
    corecore