17,565 research outputs found

    Privacy-Preserving Public Information for Sequential Games

    Full text link
    In settings with incomplete information, players can find it difficult to coordinate to find states with good social welfare. For example, in financial settings, if a collection of financial firms have limited information about each other's strategies, some large number of them may choose the same high-risk investment in hopes of high returns. While this might be acceptable in some cases, the economy can be hurt badly if many firms make investments in the same risky market segment and it fails. One reason why many firms might end up choosing the same segment is that they do not have information about other firms' investments (imperfect information may lead to `bad' game states). Directly reporting all players' investments, however, raises confidentiality concerns for both individuals and institutions. In this paper, we explore whether information about the game-state can be publicly announced in a manner that maintains the privacy of the actions of the players, and still suffices to deter players from reaching bad game-states. We show that in many games of interest, it is possible for players to avoid these bad states with the help of privacy-preserving, publicly-announced information. We model behavior of players in this imperfect information setting in two ways -- greedy and undominated strategic behaviours, and we prove guarantees on social welfare that certain kinds of privacy-preserving information can help attain. Furthermore, we design a counter with improved privacy guarantees under continual observation

    Private Decayed Sum Estimation under Continual Observation

    Full text link
    In monitoring applications, recent data is more important than distant data. How does this affect privacy of data analysis? We study a general class of data analyses - computing predicate sums - with privacy. Formally, we study the problem of estimating predicate sums {\em privately}, for sliding windows (and other well-known decay models of data, i.e. exponential and polynomial decay). We extend the recently proposed continual privacy model of Dwork et al. We present algorithms for decayed sum which are \eps-differentially private, and are accurate. For window and exponential decay sums, our algorithms are accurate up to additive 1/\eps and polylog terms in the range of the computed function; for polynomial decay sums which are technically more challenging because partial solutions do not compose easily, our algorithms incur additional relative error. Further, we show lower bounds, tight within polylog factors and tight with respect to the dependence on the probability of error

    Differentially Private Stream Processing at Scale

    Full text link
    We design, to the best of our knowledge, the first differentially private (DP) stream processing system at scale. Our system --Differential Privacy SQL Pipelines (DP-SQLP)-- is built using a streaming framework similar to Spark streaming, and is built on top of the Spanner database and the F1 query engine from Google. Towards designing DP-SQLP we make both algorithmic and systemic advances, namely, we (i) design a novel DP key selection algorithm that can operate on an unbounded set of possible keys, and can scale to one billion keys that users have contributed, (ii) design a preemptive execution scheme for DP key selection that avoids enumerating all the keys at each triggering time, and (iii) use algorithmic techniques from DP continual observation to release a continual DP histogram of user contributions to different keys over the stream length. We empirically demonstrate the efficacy by obtaining at least 16×16\times reduction in error over meaningful baselines we consider
    • …
    corecore