1,096 research outputs found

    Privacy-preserving distributed service recommendation based on locality-sensitive hashing

    Get PDF
    With the advent of IoT (Internet of Things) age, considerable web services are emerging rapidly in service communities, which places a heavy burden on the target users’ service selection decisions. In this situation, various techniques, e.g., collaborative filtering (i.e., CF) is introduced in service recommendation to alleviate the service selection burden. However, traditional CF-based service recommendation approaches often assume that the historical user-service quality data is centralized, while neglect the distributed recommendation situation. Generally, distributed service recommendation involves inevitable message communication among different parties and hence, brings challenging efficiency and privacy concerns. In view of this challenge, a novel privacy-preserving distributed service recommendation approach based on Locality-Sensitive Hashing (LSH), i.e., DistSRLSH is put forward in this paper. Through LSH, DistSRLSH can achieve a good tradeoff among service recommendation accuracy, privacy-preservation and efficiency in distributed environment. Finally, through a set of experiments deployed on WS-DREAM dataset, we validate the feasibility of our proposal in handling distributed service recommendation problems

    A smart resource management mechanism with trust access control for cloud computing environment

    Full text link
    The core of the computer business now offers subscription-based on-demand services with the help of cloud computing. We may now share resources among multiple users by using virtualization, which creates a virtual instance of a computer system running in an abstracted hardware layer. It provides infinite computing capabilities through its massive cloud datacenters, in contrast to early distributed computing models, and has been incredibly popular in recent years because to its continually growing infrastructure, user base, and hosted data volume. This article suggests a conceptual framework for a workload management paradigm in cloud settings that is both safe and performance-efficient. A resource management unit is used in this paradigm for energy and performing virtual machine allocation with efficiency, assuring the safe execution of users' applications, and protecting against data breaches brought on by unauthorised virtual machine access real-time. A secure virtual machine management unit controls the resource management unit and is created to produce data on unlawful access or intercommunication. Additionally, a workload analyzer unit works simultaneously to estimate resource consumption data to help the resource management unit be more effective during virtual machine allocation. The suggested model functions differently to effectively serve the same objective, including data encryption and decryption prior to transfer, usage of trust access mechanism to prevent unauthorised access to virtual machines, which creates extra computational cost overhead

    Privacy preserving recommender systems

    Get PDF
    The recommender systems help users find suitable and interesting products and contents from the huge amount of information that are available in the internet. There are various types of recommender systems available which have been providing recommendation services to users. For example Collaborative Filtering (CF) based recommendations, Content based (CB) recommendations, context aware recommendations and so on. Despite the fact that these recommender systems are very useful to solve the information overload problem by filtering interesting information, they suffer from huge privacy issues. In order to generate user personalized recommendations, the recommendation service providers need to acquire the information related to attributes, preferences, experiences as well as demands, which are related to users' confidential information. Usually the more information available to the service providers, the more accurate recommendations can be generated. However, the service providers are not always trustworthy to share personal information for recommendation purposes since they may cause serious privacy threats to users' privacy by leaking them to other parties or providing false recommendations. Therefore the user information must be protected prior to share them to any third party service provider to ensure the privacy of users. To overcome the privacy issues of recommender systems several techniques have been proposed which can be categorized into decentralization, randomization and secure computations based approaches. In decentralization based approach, the central service providers are removed and the main controls of recommendation services are given to participant users. The main issue with this kind of approach is that to generate recommendations, the users need to be dependant to other users' availability in online services. If any user becomes offline, her information can not be used in the system. The randomization based techniques add noises to users data to obfuscate them from learning the true information. However the main issue is that adding noise affects recommendation accuracy. On the contrary, the secure computations preserve user information while providing accurate recommendations. In this thesis we preserve user privacy by means of encrypting user information, specifically their ratings and other related information using homomorphic encryption based techniques to provide recommendations based on the encrypted data. The main advantage of homomorphic encryption based technique is that it is semantically secure and computationally it is hard to distinguish the true information from the given ciphertext. Using the homomorphic based encryption tools and techniques we build different privacy preserving protocols for different types of recommendation approaches by analyzing their privacy requirements and challenges. More specifically, we focus on different key recommendation techniques and differentiate them into centralized and partitioned dataset based recommendation techniques. From available recommendation techniques, we found that some of the existing and popular recommendation techniques like user based recommendation, item based recommendation and context aware recommendation can be grouped into centralized recommendation approach. In partitioned dataset based recommendation, the user information can be partitioned into different organizations and these organizations can collaborate with each other by gathering sufficient information in order to provide accurate recommendations without revealing their own confidential information. After categorizing the recommendation techniques we analyze the problems and requirements in terms of privacy preservation. Then for each type of recommendation approach, we develop the privacy preserving protocols to generate recommendations taking their specific privacy requirements and challenges into consideration. We also investigate the problems and limitations of existing privacy preserving recommendations and found that the current solutions suffer from huge computation and communication overhead as well as privacy of users. In the thesis we identify the related problems and solve the issues using our proposed privacy preserving protocols. As an overall idea, our proposed recommendation protocols work as follows. The users encrypt their ratings using homomorphic encryption and send them to service providers. We assume the service providers are semi honest but curious, they follow the protocol but at the same time try to find new information from the available data. The service provider has the ability to perform homomorphic operations and it performs certain computations over encrypted data without learning any true information and returns the results to the query users who ask for recommendations. The system models of our privacy preserving protocols for different recommendation techniques differ from each other because of their different privacy requirements. The proposed privacy preserving protocols are tested on various real world datasets. Based on the application areas of different recommendation approaches our gathered datasets are also different such as movie rating, social network, checkin information for different locations and quality of service of web services. For each proposed privacy preserving protocols we also present the privacy analysis and describe how the system can perform the computations without leaking the private information of users. The experimental and privacy analysis of our proposed privacy preserving protocols for different types of recommendation techniques show that they are private as well as practical

    Trustworthy Edge Machine Learning: A Survey

    Full text link
    The convergence of Edge Computing (EC) and Machine Learning (ML), known as Edge Machine Learning (EML), has become a highly regarded research area by utilizing distributed network resources to perform joint training and inference in a cooperative manner. However, EML faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EML in the eyes of its stakeholders. This survey provides a comprehensive summary of definitions, attributes, frameworks, techniques, and solutions for trustworthy EML. Specifically, we first emphasize the importance of trustworthy EML within the context of Sixth-Generation (6G) networks. We then discuss the necessity of trustworthiness from the perspective of challenges encountered during deployment and real-world application scenarios. Subsequently, we provide a preliminary definition of trustworthy EML and explore its key attributes. Following this, we introduce fundamental frameworks and enabling technologies for trustworthy EML systems, and provide an in-depth literature review of the latest solutions to enhance trustworthiness of EML. Finally, we discuss corresponding research challenges and open issues.Comment: 27 pages, 7 figures, 10 table

    Metaverse: A Vision, Architectural Elements, and Future Directions for Scalable and Realtime Virtual Worlds

    Full text link
    With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions
    • …
    corecore