168 research outputs found

    Enabling Privacy-preserving Auctions in Big Data

    Full text link
    We study how to enable auctions in the big data context to solve many upcoming data-based decision problems in the near future. We consider the characteristics of the big data including, but not limited to, velocity, volume, variety, and veracity, and we believe any auction mechanism design in the future should take the following factors into consideration: 1) generality (variety); 2) efficiency and scalability (velocity and volume); 3) truthfulness and verifiability (veracity). In this paper, we propose a privacy-preserving construction for auction mechanism design in the big data, which prevents adversaries from learning unnecessary information except those implied in the valid output of the auction. More specifically, we considered one of the most general form of the auction (to deal with the variety), and greatly improved the the efficiency and scalability by approximating the NP-hard problems and avoiding the design based on garbled circuits (to deal with velocity and volume), and finally prevented stakeholders from lying to each other for their own benefit (to deal with the veracity). We achieve these by introducing a novel privacy-preserving winner determination algorithm and a novel payment mechanism. Additionally, we further employ a blind signature scheme as a building block to let bidders verify the authenticity of their payment reported by the auctioneer. The comparison with peer work shows that we improve the asymptotic performance of peer works' overhead from the exponential growth to a linear growth and from linear growth to a logarithmic growth, which greatly improves the scalability

    PS-TRUST: Provably Secure Solution for Truthful Double Spectrum Auctions

    Full text link
    Truthful spectrum auctions have been extensively studied in recent years. Truthfulness makes bidders bid their true valuations, simplifying greatly the analysis of auctions. However, revealing one's true valuation causes severe privacy disclosure to the auctioneer and other bidders. To make things worse, previous work on secure spectrum auctions does not provide adequate security. In this paper, based on TRUST, we propose PS-TRUST, a provably secure solution for truthful double spectrum auctions. Besides maintaining the properties of truthfulness and special spectrum reuse of TRUST, PS-TRUST achieves provable security against semi-honest adversaries in the sense of cryptography. Specifically, PS-TRUST reveals nothing about the bids to anyone in the auction, except the auction result. To the best of our knowledge, PS-TRUST is the first provably secure solution for spectrum auctions. Furthermore, experimental results show that the computation and communication overhead of PS-TRUST is modest, and its practical applications are feasible.Comment: 9 pages, 4 figures, submitted to Infocom 201

    Price-Based Combinatorial Auction: Connectedness and Representative Valuations

    Get PDF
    We investigate combinatorial auctions from a practical perspective. The auctioneer gathers information according to a dynamical protocol termed ask price procedure. We demonstrate a method for elucidating whether a procedure gathers sufficient information for deriving a VCG mechanism. We calculate representative valuation functions in a history-contingent manner, and show that it is necessary and sufficient to examine whether efficient allocations with and without any buyer associated with the profile of representative valuation functions were revealed. This method is tractable, and can be applied to general procedures with connectedness. The representative valuation functions could be the sufficient statistics for privacy preservation.

    Privacy Preserving Auction Based Virtual Machine Instances Allocation Scheme for Cloud Computing Environment

    Get PDF
    Cloud Computing Environment provides computing resources in the form of Virtual Machines (VMs), to the cloud users through Internet. Auction-based VM instances allocation allows different cloud users to participate in an auction for a bundle of Virtual Machine instances where the user with the highest bid value will be selected as the winner by the auctioneer (Cloud Service Provider) to gain more. In this auction mechanism, individual bid values are revealed to the auctioneer in order to select the winner as a result of which privacy of bid values are lost. In this paper, we proposed an auction scheme to select the winner without revealing the individual bid values to the auctioneer to maintain privacy of bid values. The winner will get the access to the bundle of VM instances. This  scheme relies on a set of cryptographic protocols including Oblivious Transfer (OT) protocol and Yao’s protocol to maintain privacy of bid values

    Constrained Signaling in Auction Design

    Full text link
    We consider the problem of an auctioneer who faces the task of selling a good (drawn from a known distribution) to a set of buyers, when the auctioneer does not have the capacity to describe to the buyers the exact identity of the good that he is selling. Instead, he must come up with a constrained signalling scheme: a (non injective) mapping from goods to signals, that satisfies the constraints of his setting. For example, the auctioneer may be able to communicate only a bounded length message for each good, or he might be legally constrained in how he can advertise the item being sold. Each candidate signaling scheme induces an incomplete-information game among the buyers, and the goal of the auctioneer is to choose the signaling scheme and accompanying auction format that optimizes welfare. In this paper, we use techniques from submodular function maximization and no-regret learning to give algorithms for computing constrained signaling schemes for a variety of constrained signaling problems
    • …
    corecore