4,897 research outputs found

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Empirical Analysis of Privacy Preservation Models for Cyber Physical Deployments from a Pragmatic Perspective

    Get PDF
    The difficulty of privacy protection in cyber-physical installations encompasses several sectors and calls for methods like encryption, hashing, secure routing, obfuscation, and data exchange, among others. To create a privacy preservation model for cyber physical deployments, it is advised that data privacy, location privacy, temporal privacy, node privacy, route privacy, and other types of privacy be taken into account. Consideration must also be given to other types of privacy, such as temporal privacy. The computationally challenging process of incorporating these models into any wireless network also affects quality of service (QoS) variables including end-to-end latency, throughput, energy use, and packet delivery ratio. The best privacy models must be used by network designers and should have the least negative influence on these quality-of-service characteristics. The designers used common privacy models for the goal of protecting cyber-physical infrastructure in order to achieve this. The limitations of these installations' interconnection and interface-ability are not taken into account in this. As a result, even while network security has increased, the network's overall quality of service has dropped. The many state-of-the-art methods for preserving privacy in cyber-physical deployments without compromising their performance in terms of quality of service are examined and analyzed in this research. Lowering the likelihood that such circumstances might arise is the aim of this investigation and review. These models are rated according to how much privacy they provide, how long it takes from start to finish to transfer data, how much energy they use, and how fast their networks are. In order to maximize privacy while maintaining a high degree of service performance, the comparison will assist network designers and researchers in selecting the optimal models for their particular deployments. Additionally, the author of this book offers a variety of tactics that, when used together, might improve each reader's performance. This study also provides a range of tried-and-true machine learning approaches that networks may take into account and examine in order to enhance their privacy performance

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions

    Preserving Privacy in Cyber-physical-social systems: An Anonymity and Access Control Approach

    Get PDF
    With the significant development of mobile commerce, the integration of physical, social, and cyber worlds is increasingly common. The term Cyber Physical Social Systems is used to capture technology’s human-centric role. With the revolutionization of CPSS, privacy protections become a major concern for both customers and enterprises. Although data generalization by obfuscation and anonymity can provide protection for an individual’s privacy, overgeneralization may lead to less-valuable data. In this paper, we contrive generalization boundary techniques (k-anonymity) to maximize data usability while minimizing disclosure with a privacy access control mechanism. This paper proposes a combination of purpose-based access control models with an anonymity technique in distributed computing environments for privacy preserving policies and mechanisms that demonstrate policy conflicting problems. This combined approach will provide protections for individual personal information and make data sharable to authorized party with proper purposes. Here, we have examined data with k-anonymity to create a specific level of obfuscation that maintains the usefulness of data and used a heuristic approach to a privacy access control framework in which the privacy requirement is to satisfy the k-anonymity. The extensive experiments on both real-world and synthetic data sets show that the proposed privacy aware access control model with k- anonymity is practical and effective. It will generate an anonymized data set in accordance with the privacy clearance of a certain request and allow users access at different privacy levels, fulfilling some set of obligations and addressing privacy and utility requirements, flexible access control, and improved data availability, while guaranteeing a certain level of privacy.Ope

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    Integrity and Privacy Protection for Cyber-physical Systems (CPS)

    Get PDF
    The present-day interoperable and interconnected cyber-physical systems (CPS) provides significant value in our daily lives with the incorporation of advanced technologies. Still, it also increases the exposure to many security privacy risks like (1) maliciously manipulating the CPS data and sensors to compromise the integrity of the system (2) launching internal/external cyber-physical attacks on the central controller dependent CPS systems to cause a single point of failure issues (3) running malicious data and query analytics on the CPS data to identify internal insights and use it for achieving financial incentive. Moreover, (CPS) data privacy protection during sharing, aggregating, and publishing has also become challenging nowadays because most of the existing CPS security and privacy solutions have drawbacks, like (a) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (b) ignoring data providers privacy preference, (c) using uniform privacy protection which may create inadequate privacy for some provider while overprotecting others.Therefore, to address these issues, the primary purpose of this thesis is to orchestrate the development of a decentralized, p2p connected data privacy preservation model to improve the CPS system's integrity against malicious attacks. In that regard, we adopt blockchain to facilitate a decentralized and highly secured system model for CPS with self-defensive capabilities. This proposed model will mitigate data manipulation attacks from malicious entities by introducing bloom filter-based fast CPS device identity validation and Merkle tree-based fast data verification. Finally, the blockchain consensus will help to keep consistency and eliminate malicious entities from the protection framework. Furthermore, to address the data privacy issues in CPS, we propose a personalized data privacy model by introducing a standard vulnerability profiling library (SVPL) to characterize and quantify the CPS vulnerabilities and identify the necessary privacy requirements. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that the blockchain-based system model is scalable and fast enough for CPS data's integrity verification. Also, the proposed PDP model can attain better data privacy by eliminating the trade-off between privacy, utility, and risk of losing information
    corecore