4,727 research outputs found

    Grid-VirtuE: a layered architecture for grid virtual enterprises

    Get PDF
    A grid virtual enterprise is a community of independent enterprises concerned with a particular sector of the economy. Its members (nodes) are small or medium size enterprises (SME) engaged in bilateral transactions. An important principle of a grid virtual enterprise is the lack of any global "guiding force", with each member of the community making its own independent decisions. In this paper we describe Grid-VirtuE, a three-layer architecture for grid virtual enterprises. The top layer of the architecture, representing its ultimate purpose, is an environment in which grid virtual enterprises can be modeled and implemented. This layer is supported by middleware infrastructure for grids, providing a host of grid services, such as node-to-node communication, bilateral transactions, and data collection. The bottom layer is essentially a distributed data warehouse for storing, sharing and analyzing the large amounts of data generated by the grid. Among other functionalities, the warehouse handles the dissemination of data among the members of the grid; it confronts issues of data magnitude with an aging mechanism that aggregates old data at a lower level of detail; and it incorporates privacy-preserving features that retain the confidentiality of individual members. Warehouse information is also used for data and process mining, aimed at analyzing the behavior of the enterprise, and subsequently inducing evolutionary changes that will improve its performance.A grid virtual enterprise is a community of independent enterprises concerned with a particular sector of the economy. Its members (nodes) are small or medium size enterprises (SME) engaged in bilateral transactions. An important principle of a grid virtual enterprise is the lack of any global "guiding force", with each member of the community making its own independent decisions. In this paper we describe Grid-VirtuE, a three-layer architecture for grid virtual enterprises. The top layer of the architecture, representing its ultimate purpose, is an environment in which grid virtual enterprises can be modeled and implemented. This layer is supported by middleware infrastructure for grids, providing a host of grid services, such as node-to-node communication, bilateral transactions, and data collection. The bottom layer is essentially a distributed data warehouse for storing, sharing and analyzing the large amounts of data generated by the grid. Among other functionalities, the warehouse handles the dissemination of data among the members of the grid; it confronts issues of data magnitude with an aging mechanism that aggregates old data at a lower level of detail; and it incorporates privacy-preserving features that retain the confidentiality of individual members. Warehouse information is also used for data and process mining, aimed at analyzing the behavior of the enterprise, and subsequently inducing evolutionary changes that will improve its performance.Monograph's chapter

    Designing privacy for scalable electronic healthcare linkage

    Get PDF
    A unified electronic health record (EHR) has potentially immeasurable benefits to society, and the current healthcare industry drive to create a single EHR reflects this. However, adoption is slow due to two major factors: the disparate nature of data and storage facilities of current healthcare systems and the security ramifications of accessing and using that data and concerns about potential misuse of that data. To attempt to address these issues this paper presents the VANGUARD (Virtual ANonymisation Grid for Unified Access of Remote Data) system which supports adaptive security-oriented linkage of disparate clinical data-sets to support a variety of virtual EHRs avoiding the need for a single schematic standard and natural concerns of data owners and other stakeholders on data access and usage. VANGUARD has been designed explicit with security in mind and supports clear delineation of roles for data linkage and usage

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view
    • …
    corecore