10,501 research outputs found

    Privacy-Compatibility For General Utility Metrics

    Get PDF
    In this note, we present a complete characterization of the utility metrics that allow for non-trivial differential privacy guarantees

    Constructing elastic distinguishability metrics for location privacy

    Full text link
    With the increasing popularity of hand-held devices, location-based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their users. The recently introduced notion of geo-indistinguishability tries to address this problem by adapting the well-known concept of differential privacy to the area of location-based systems. Although geo-indistinguishability presents various appealing aspects, it has the problem of treating space in a uniform way, imposing the addition of the same amount of noise everywhere on the map. In this paper we propose a novel elastic distinguishability metric that warps the geometrical distance, capturing the different degrees of density of each area. As a consequence, the obtained mechanism adapts the level of noise while achieving the same degree of privacy everywhere. We also show how such an elastic metric can easily incorporate the concept of a "geographic fence" that is commonly employed to protect the highly recurrent locations of a user, such as his home or work. We perform an extensive evaluation of our technique by building an elastic metric for Paris' wide metropolitan area, using semantic information from the OpenStreetMap database. We compare the resulting mechanism against the Planar Laplace mechanism satisfying standard geo-indistinguishability, using two real-world datasets from the Gowalla and Brightkite location-based social networks. The results show that the elastic mechanism adapts well to the semantics of each area, adjusting the noise as we move outside the city center, hence offering better overall privacy

    Notes on Cloud computing principles

    Get PDF
    This letter provides a review of fundamental distributed systems and economic Cloud computing principles. These principles are frequently deployed in their respective fields, but their inter-dependencies are often neglected. Given that Cloud Computing first and foremost is a new business model, a new model to sell computational resources, the understanding of these concepts is facilitated by treating them in unison. Here, we review some of the most important concepts and how they relate to each other

    When and where do you want to hide? Recommendation of location privacy preferences with local differential privacy

    Full text link
    In recent years, it has become easy to obtain location information quite precisely. However, the acquisition of such information has risks such as individual identification and leakage of sensitive information, so it is necessary to protect the privacy of location information. For this purpose, people should know their location privacy preferences, that is, whether or not he/she can release location information at each place and time. However, it is not easy for each user to make such decisions and it is troublesome to set the privacy preference at each time. Therefore, we propose a method to recommend location privacy preferences for decision making. Comparing to existing method, our method can improve the accuracy of recommendation by using matrix factorization and preserve privacy strictly by local differential privacy, whereas the existing method does not achieve formal privacy guarantee. In addition, we found the best granularity of a location privacy preference, that is, how to express the information in location privacy protection. To evaluate and verify the utility of our method, we have integrated two existing datasets to create a rich information in term of user number. From the results of the evaluation using this dataset, we confirmed that our method can predict location privacy preferences accurately and that it provides a suitable method to define the location privacy preference

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward
    • …
    corecore