20,422 research outputs found

    Web-based multi-party computation with application to anonymous aggregate compensation analytics

    Full text link
    We describe the definition, design, implementation, and deployment of a multi-party computation protocol and supporting web-based infrastructure. The protocol and infrastructure constitute a software application that allows groups of cooperating parties, such as companies or other organizations, to collect aggregate data for statistical analysis without revealing the data of individual participants. The application was developed specifically to support a Boston Women's Workforce Council (BWWC) study of the gender wage gap among employers within the Greater Boston Area. The application was deployed successfully to collect aggregate statistical data pertaining to compensation levels across genders and demographics at a number of participating organizations.We would like to acknowledge all the members of the Boston Women's Workforce Council (BWWC), and to thank in particular Christina M. Knowles and Katie A. Johnston, who led the effort to organize participants and deploy the protocol as part of the 100% Talent: The Boston Women's Compact effort [1, 2]. We would also like to acknowledge the Boston University Initiative on Cities, and in particular Executive Director Katherine Lusk, who brought this potential application of secure multi-party computation to our attention. Both the BWWC and the Initiative on Cities contributed funding to complete this work. We would also like to acknowledge the Hariri Institute at Boston University for contributing research and software development resources. Support was also provided in part by Smart-city Cloud-based Open Platform and Ecosystem (SCOPE), an NSF Division of Industrial Innovation and Partnerships PFI:BIC project under award #1430145, and by Modular Approach to Cloud Security (MACS), an NSF CISE CNS SaTC Frontier project under award #1414119

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    Privacy Tradeoffs in Predictive Analytics

    Full text link
    Online services routinely mine user data to predict user preferences, make recommendations, and place targeted ads. Recent research has demonstrated that several private user attributes (such as political affiliation, sexual orientation, and gender) can be inferred from such data. Can a privacy-conscious user benefit from personalization while simultaneously protecting her private attributes? We study this question in the context of a rating prediction service based on matrix factorization. We construct a protocol of interactions between the service and users that has remarkable optimality properties: it is privacy-preserving, in that no inference algorithm can succeed in inferring a user's private attribute with a probability better than random guessing; it has maximal accuracy, in that no other privacy-preserving protocol improves rating prediction; and, finally, it involves a minimal disclosure, as the prediction accuracy strictly decreases when the service reveals less information. We extensively evaluate our protocol using several rating datasets, demonstrating that it successfully blocks the inference of gender, age and political affiliation, while incurring less than 5% decrease in the accuracy of rating prediction.Comment: Extended version of the paper appearing in SIGMETRICS 201

    Homo Datumicus : correcting the market for identity data

    Get PDF
    Effective digital identity systems offer great economic and civic potential. However, unlocking this potential requires dealing with social, behavioural, and structural challenges to efficient market formation. We propose that a marketplace for identity data can be more efficiently formed with an infrastructure that provides a more adequate representation of individuals online. This paper therefore introduces the ontological concept of Homo Datumicus: individuals as data subjects transformed by HAT Microservers, with the axiomatic computational capabilities to transact with their own data at scale. Adoption of this paradigm would lower the social risks of identity orientation, enable privacy preserving transactions by default and mitigate the risks of power imbalances in digital identity systems and markets
    • …
    corecore