2,212 research outputs found

    Homomorphic Encryption for Speaker Recognition: Protection of Biometric Templates and Vendor Model Parameters

    Full text link
    Data privacy is crucial when dealing with biometric data. Accounting for the latest European data privacy regulation and payment service directive, biometric template protection is essential for any commercial application. Ensuring unlinkability across biometric service operators, irreversibility of leaked encrypted templates, and renewability of e.g., voice models following the i-vector paradigm, biometric voice-based systems are prepared for the latest EU data privacy legislation. Employing Paillier cryptosystems, Euclidean and cosine comparators are known to ensure data privacy demands, without loss of discrimination nor calibration performance. Bridging gaps from template protection to speaker recognition, two architectures are proposed for the two-covariance comparator, serving as a generative model in this study. The first architecture preserves privacy of biometric data capture subjects. In the second architecture, model parameters of the comparator are encrypted as well, such that biometric service providers can supply the same comparison modules employing different key pairs to multiple biometric service operators. An experimental proof-of-concept and complexity analysis is carried out on the data from the 2013-2014 NIST i-vector machine learning challenge

    Frictionless Authentication Systems: Emerging Trends, Research Challenges and Opportunities

    Get PDF
    Authentication and authorization are critical security layers to protect a wide range of online systems, services and content. However, the increased prevalence of wearable and mobile devices, the expectations of a frictionless experience and the diverse user environments will challenge the way users are authenticated. Consumers demand secure and privacy-aware access from any device, whenever and wherever they are, without any obstacles. This paper reviews emerging trends and challenges with frictionless authentication systems and identifies opportunities for further research related to the enrollment of users, the usability of authentication schemes, as well as security and privacy trade-offs of mobile and wearable continuous authentication systems.Comment: published at the 11th International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2017

    Challenges of Multi-Factor Authentication for Securing Advanced IoT (A-IoT) Applications

    Full text link
    The unprecedented proliferation of smart devices together with novel communication, computing, and control technologies have paved the way for the Advanced Internet of Things~(A-IoT). This development involves new categories of capable devices, such as high-end wearables, smart vehicles, and consumer drones aiming to enable efficient and collaborative utilization within the Smart City paradigm. While massive deployments of these objects may enrich people's lives, unauthorized access to the said equipment is potentially dangerous. Hence, highly-secure human authentication mechanisms have to be designed. At the same time, human beings desire comfortable interaction with their owned devices on a daily basis, thus demanding the authentication procedures to be seamless and user-friendly, mindful of the contemporary urban dynamics. In response to these unique challenges, this work advocates for the adoption of multi-factor authentication for A-IoT, such that multiple heterogeneous methods - both well-established and emerging - are combined intelligently to grant or deny access reliably. We thus discuss the pros and cons of various solutions as well as introduce tools to combine the authentication factors, with an emphasis on challenging Smart City environments. We finally outline the open questions to shape future research efforts in this emerging field.Comment: 7 pages, 4 figures, 2 tables. The work has been accepted for publication in IEEE Network, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl

    THRIVE: Threshold Homomorphic encryption based secure and privacy preserving bIometric VErification system

    Get PDF
    In this paper, we propose a new biometric verification and template protection system which we call the THRIVE system. The system includes novel enrollment and authentication protocols based on threshold homomorphic cryptosystem where the private key is shared between a user and the verifier. In the THRIVE system, only encrypted binary biometric templates are stored in the database and verification is performed via homomorphically randomized templates, thus, original templates are never revealed during the authentication stage. The THRIVE system is designed for the malicious model where the cheating party may arbitrarily deviate from the protocol specification. Since threshold homomorphic encryption scheme is used, a malicious database owner cannot perform decryption on encrypted templates of the users in the database. Therefore, security of the THRIVE system is enhanced using a two-factor authentication scheme involving the user's private key and the biometric data. We prove security and privacy preservation capability of the proposed system in the simulation-based model with no assumption. The proposed system is suitable for applications where the user does not want to reveal her biometrics to the verifier in plain form but she needs to proof her physical presence by using biometrics. The system can be used with any biometric modality and biometric feature extraction scheme whose output templates can be binarized. The overall connection time for the proposed THRIVE system is estimated to be 336 ms on average for 256-bit biohash vectors on a desktop PC running with quad-core 3.2 GHz CPUs at 10 Mbit/s up/down link connection speed. Consequently, the proposed system can be efficiently used in real life applications

    Privacy protecting biometric authentication systems

    Get PDF
    As biometrics gains popularity and proliferates into the daily life, there is an increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. The major concerns are about i) the use of biometrics to track people, ii) non-revocability of biometrics (eg. if a fingerprint is compromised it can not be canceled or reissued), and iii) disclosure of sensitive information such as race, gender and health problems which may be revealed by biometric traits. The straightforward suggestion of keeping the biometric data in a user owned token (eg. smart cards) does not completely solve the problem, since malicious users can claim that their token is broken to avoid biometric verification altogether. Put together, these concerns brought the need for privacy preserving biometric authentication methods in the recent years. In this dissertation, we survey existing privacy preserving biometric systems and implement and analyze fuzzy vault in particular; we propose a new privacy preserving approach; and we study the discriminative capability of online signatures as it relates to the success of using online signatures in the available privacy preserving biometric verification systems. Our privacy preserving authentication scheme combines multiple biometric traits to obtain a multi-biometric template that hides the constituent biometrics and allows the possibility of creating non-unique identifiers for a person, such that linking separate template databases is impossible. We provide two separate realizations of the framework: one uses two separate fingerprints of the same individual to obtain a combined biometric template, while the other one combines a fingerprint with a vocal pass-phrase. We show that both realizations of the framework are successful in verifying a person's identity given both biometric traits, while preserving privacy (i.e. biometric data is protected and the combined identifier can not be used to track people). The Fuzzy Vault emerged as a promising construct which can be used in protecting biometric templates. It combines biometrics and cryptography in order to get the benefits of both fields; while biometrics provides non-repudiation and convenience, cryptography guarantees privacy and adjustable levels of security. On the other hand, the fuzzy vault is a general construct for unordered data, and as such, it is not straightforward how it can be used with different biometric traits. In the scope of this thesis, we demonstrate realizations of the fuzzy vault using fingerprints and online signatures such that authentication can be done while biometric templates are protected. We then demonstrate how to use the fuzzy vault for secret sharing, using biometrics. Secret sharing schemes are cryptographic constructs where a secret is split into shares and distributed amongst the participants in such a way that it is constructed/revealed only when a necessary number of share holders come together (e.g. in joint bank accounts). The revealed secret can then be used for encryption or authentication. Finally, we implemented how correlation attacks can be used to unlock the vault; showing that further measures are needed to protect the fuzzy vault against such attacks. The discriminative capability of a biometric modality is based on its uniqueness/entropy and is an important factor in choosing a biometric for a large-scale deployment or a cryptographic application. We present an individuality model for online signatures in order to substantiate their applicability in biometric authentication. In order to build our model, we adopt the Fourier domain representation of the signature and propose a matching algorithm. The signature individuality is measured as the probability of a coincidental match between two arbitrary signatures, where model parameters are estimated using a large signature database. Based on this preliminary model and estimated parameters, we conclude that an average online signature provides a high level of security for authentication purposes. Finally, we provide a public online signature database along with associated testing protocols that can be used for testing signature verification system
    corecore