6 research outputs found

    Enabling Multi-level Trust in Privacy Preserving Data Mining

    Full text link
    Privacy Preserving Data Mining (PPDM) addresses the problem of developing accurate models about aggregated data without access to precise information in individual data record. A widely studied \emph{perturbation-based PPDM} approach introduces random perturbation to individual values to preserve privacy before data is published. Previous solutions of this approach are limited in their tacit assumption of single-level trust on data miners. In this work, we relax this assumption and expand the scope of perturbation-based PPDM to Multi-Level Trust (MLT-PPDM). In our setting, the more trusted a data miner is, the less perturbed copy of the data it can access. Under this setting, a malicious data miner may have access to differently perturbed copies of the same data through various means, and may combine these diverse copies to jointly infer additional information about the original data that the data owner does not intend to release. Preventing such \emph{diversity attacks} is the key challenge of providing MLT-PPDM services. We address this challenge by properly correlating perturbation across copies at different trust levels. We prove that our solution is robust against diversity attacks with respect to our privacy goal. That is, for data miners who have access to an arbitrary collection of the perturbed copies, our solution prevent them from jointly reconstructing the original data more accurately than the best effort using any individual copy in the collection. Our solution allows a data owner to generate perturbed copies of its data for arbitrary trust levels on-demand. This feature offers data owners maximum flexibility.Comment: 20 pages, 5 figures. Accepted for publication in IEEE Transactions on Knowledge and Data Engineerin

    A survey of machine and deep learning methods for privacy protection in the Internet of things

    Get PDF
    Recent advances in hardware and information technology have accelerated the proliferation of smart and interconnected devices facilitating the rapid development of the Internet of Things (IoT). IoT applications and services are widely adopted in environments such as smart cities, smart industry, autonomous vehicles, and eHealth. As such, IoT devices are ubiquitously connected, transferring sensitive and personal data without requiring human interaction. Consequently, it is crucial to preserve data privacy. This paper presents a comprehensive survey of recent Machine Learning (ML)- and Deep Learning (DL)-based solutions for privacy in IoT. First, we present an in depth analysis of current privacy threats and attacks. Then, for each ML architecture proposed, we present the implementations, details, and the published results. Finally, we identify the most effective solutions for the different threats and attacks.This work is partially supported by the Generalitat de Catalunya under grant 2017 SGR 962 and the HORIZON-GPHOENIX (101070586) and HORIZON-EUVITAMIN-V (101093062) projects.Peer ReviewedPostprint (published version
    corecore