26,199 research outputs found

    Statistical verification and differential privacy in cyber-physical systems

    Get PDF
    This thesis studies the statistical verification and differential privacy in Cyber-Physical Systems. The first part focuses on the statistical verification of stochastic hybrid system, a class of formal models for Cyber-Physical Systems. Model reduction techniques are performed on both Discrete-Time and Continuous-Time Stochastic Hybrid Systems to reduce them to Discrete-Time Markov Chains and Continuous-Time Markov Chains, respectively; and statistical verification algorithms are proposed to verify Linear Inequality LTL and Metric Interval Temporal Logic on these discrete probabilistic models. In addition, the advantage of stratified sampling in verifying Probabilistic Computation Tree Logic on Labeled Discrete-Time Markov Chains is studied; this method can potentially be extended to other statistical verification algorithms to reduce computational costs. The second part focuses on the Differential Privacy in multi-agent systems that involve share information sharing to achieve overall control goals. A general formulation of the systems and a notion of Differential Privacy are proposed, and a trade-off between the Differential Privacy and the tracking performance of the systems is demonstrated. In addition, it is proved that there is a trade-off between Differential Privacy and the entropy of the unbiased estimator of the private data, and an optimal algorithm to achieve the best trade-off is given

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions
    • …
    corecore