247,534 research outputs found

    Cloud-based Quadratic Optimization with Partially Homomorphic Encryption

    Get PDF
    The development of large-scale distributed control systems has led to the outsourcing of costly computations to cloud-computing platforms, as well as to concerns about privacy of the collected sensitive data. This paper develops a cloud-based protocol for a quadratic optimization problem involving multiple parties, each holding information it seeks to maintain private. The protocol is based on the projected gradient ascent on the Lagrange dual problem and exploits partially homomorphic encryption and secure multi-party computation techniques. Using formal cryptographic definitions of indistinguishability, the protocol is shown to achieve computational privacy, i.e., there is no computationally efficient algorithm that any involved party can employ to obtain private information beyond what can be inferred from the party's inputs and outputs only. In order to reduce the communication complexity of the proposed protocol, we introduced a variant that achieves this objective at the expense of weaker privacy guarantees. We discuss in detail the computational and communication complexity properties of both algorithms theoretically and also through implementations. We conclude the paper with a discussion on computational privacy and other notions of privacy such as the non-unique retrieval of the private information from the protocol outputs

    Sample Complexity Bounds on Differentially Private Learning via Communication Complexity

    Full text link
    In this work we analyze the sample complexity of classification by differentially private algorithms. Differential privacy is a strong and well-studied notion of privacy introduced by Dwork et al. (2006) that ensures that the output of an algorithm leaks little information about the data point provided by any of the participating individuals. Sample complexity of private PAC and agnostic learning was studied in a number of prior works starting with (Kasiviswanathan et al., 2008) but a number of basic questions still remain open, most notably whether learning with privacy requires more samples than learning without privacy. We show that the sample complexity of learning with (pure) differential privacy can be arbitrarily higher than the sample complexity of learning without the privacy constraint or the sample complexity of learning with approximate differential privacy. Our second contribution and the main tool is an equivalence between the sample complexity of (pure) differentially private learning of a concept class CC (or SCDP(C)SCDP(C)) and the randomized one-way communication complexity of the evaluation problem for concepts from CC. Using this equivalence we prove the following bounds: 1. SCDP(C)=Ω(LDim(C))SCDP(C) = \Omega(LDim(C)), where LDim(C)LDim(C) is the Littlestone's (1987) dimension characterizing the number of mistakes in the online-mistake-bound learning model. Known bounds on LDim(C)LDim(C) then imply that SCDP(C)SCDP(C) can be much higher than the VC-dimension of CC. 2. For any tt, there exists a class CC such that LDim(C)=2LDim(C)=2 but SCDP(C)tSCDP(C) \geq t. 3. For any tt, there exists a class CC such that the sample complexity of (pure) α\alpha-differentially private PAC learning is Ω(t/α)\Omega(t/\alpha) but the sample complexity of the relaxed (α,β)(\alpha,\beta)-differentially private PAC learning is O(log(1/β)/α)O(\log(1/\beta)/\alpha). This resolves an open problem of Beimel et al. (2013b).Comment: Extended abstract appears in Conference on Learning Theory (COLT) 201

    Killing Two Birds with One Stone: Quantization Achieves Privacy in Distributed Learning

    Full text link
    Communication efficiency and privacy protection are two critical issues in distributed machine learning. Existing methods tackle these two issues separately and may have a high implementation complexity that constrains their application in a resource-limited environment. We propose a comprehensive quantization-based solution that could simultaneously achieve communication efficiency and privacy protection, providing new insights into the correlated nature of communication and privacy. Specifically, we demonstrate the effectiveness of our proposed solutions in the distributed stochastic gradient descent (SGD) framework by adding binomial noise to the uniformly quantized gradients to reach the desired differential privacy level but with a minor sacrifice in communication efficiency. We theoretically capture the new trade-offs between communication, privacy, and learning performance

    Towards Communication-Efficient Quantum Oblivious Key Distribution

    Get PDF
    Oblivious Transfer, a fundamental problem in the field of secure multi-party computation is defined as follows: A database DB of N bits held by Bob is queried by a user Alice who is interested in the bit DB_b in such a way that (1) Alice learns DB_b and only DB_b and (2) Bob does not learn anything about Alice's choice b. While solutions to this problem in the classical domain rely largely on unproven computational complexity theoretic assumptions, it is also known that perfect solutions that guarantee both database and user privacy are impossible in the quantum domain. Jakobi et al. [Phys. Rev. A, 83(2), 022301, Feb 2011] proposed a protocol for Oblivious Transfer using well known QKD techniques to establish an Oblivious Key to solve this problem. Their solution provided a good degree of database and user privacy (using physical principles like impossibility of perfectly distinguishing non-orthogonal quantum states and the impossibility of superluminal communication) while being loss-resistant and implementable with commercial QKD devices (due to the use of SARG04). However, their Quantum Oblivious Key Distribution (QOKD) protocol requires a communication complexity of O(N log N). Since modern databases can be extremely large, it is important to reduce this communication as much as possible. In this paper, we first suggest a modification of their protocol wherein the number of qubits that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum communication complexity even further in such a way that only a few hundred qubits are needed to be transferred even for very large databases.Comment: 7 page
    corecore