14,664 research outputs found

    Accessing Patient Records in Virtual Healthcare Organisations

    No full text
    The ARTEMIS project is developing a semantic web service based P2P interoperability infrastructure for healthcare information systems that will allow healthcare providers to securely share patient records within virtual healthcare organisations. Authorisation decisions to access patient records across organisation boundaries can be very dynamic and must occur within a strict legislative framework. In ARTEMIS we are developing a dynamic authorisation mechanism called PBAC that provides a means of contextual and process oriented access control to enforce healthcare business processes. PBAC demonstrates how healthcare providers can dynamically share patient records for care pathways across organisation boundaries

    On a Formal and User-friendly Linguistic Approach to Access Control of Electronic Health Data

    Get PDF
    The importance of the exchange of Electronic Health Records (EHRs) between hospitals has been recognized by governments and institutions. Due to the sensitivity of data exchanged, only mature standards and implementations can be chosen to operate. This exchange process is of course under the control of the patient, who decides who has the rights to access her personal healthcare data and who has not, by giving her personal privacy consent. Patients’ privacy consent is regulated by local legislations, which can vary frequently from region to region. The technology implementing such privacy aspects must be highly adaptable, often resulting in complex security scenarios that cannot be easily managed by patients and software designers. To overcome such security problems, we advocate the use of a linguistic approach that relies on languages for expressing policies with solid mathematical foundations. Our approach bases on FACPL, a policy language we have intentionally designed by taking inspiration from OASIS XACML, the de-facto standard used in all projects covering secure EHRs transmission protected by patients’ privacy consent. FACPL can express policies similar to those expressible by XACML but, differently from XACML, it has an intuitive syntax, a formal semantics and easy to use software tools supporting policy development and enforcement. In this paper, we present the potentialities of our approach and outline ongoing work

    An authorization policy management framework for dynamic medical data sharing

    Full text link
    In this paper, we propose a novel feature reduction approach to group words hierarchically into clusters which can then be used as new features for document classification. Initially, each word constitutes a cluster. We calculate the mutual confidence between any two different words. The pair of clusters containing the two words with the highest mutual confidence are combined into a new cluster. This process of merging is iterated until all the mutual confidences between the un-processed pair of words are smaller than a predefined threshold or only one cluster exists. In this way, a hierarchy of word clusters is obtained. The user can decide the clusters, from a certain level, to be used as new features for document classification. Experimental results have shown that our method can perform better than other methods.<br /

    How Registries Can Help Performance Measurement Improve Care

    Get PDF
    Suggests ways to better utilize databases of clinical information to evaluate care processes and outcomes and improve measurements of healthcare quality and costs, comparative clinical effectiveness research, and medical product safety surveillance

    Audit-based Compliance Control (AC2) for EHR Systems

    Get PDF
    Traditionally, medical data is stored and processed using paper-based files. Recently, medical facilities have started to store, access and exchange medical data in digital form. The drivers for this change are mainly demands for cost reduction, and higher quality of health care. The main concerns when dealing with medical data are availability and confidentiality. Unavailability (even temporary) of medical data is expensive. Physicians may not be able to diagnose patients correctly, or they may have to repeat exams, adding to the overall costs of health care. In extreme cases availability of medical data can even be a matter of life or death. On the other hand, confidentiality of medical data is also important. Legislation requires medical facilities to observe the privacy of the patients, and states that patients have a final say on whether or not their medical data can be processed or not. Moreover, if physicians, or their EHR systems, are not trusted by the patients, for instance because of frequent privacy breaches, then patients may refuse to submit (correct) information, complicating the work of the physicians greatly. \ud \ud In traditional data protection systems, confidentiality and availability are conflicting requirements. The more data protection methods are applied to shield data from outsiders the more likely it becomes that authorized persons will not get access to the data in time. Consider for example, a password verification service that is temporarily not available, an access pass that someone forgot to bring, and so on. In this report we discuss a novel approach to data protection, Audit-based Compliance Control (AC2), and we argue that it is particularly suited for application in EHR systems. In AC2, a-priori access control is minimized to the mere authentication of users and objects, and their basic authorizations. More complex security procedures, such as checking user compliance to policies, are performed a-posteriori by using a formal and automated auditing mechanism. To support our claim we discuss legislation concerning the processing of health records, and we formalize a scenario involving medical personnel and a basic EHR system to show how AC2 can be used in practice. \ud \ud This report is based on previous work (Dekker & Etalle 2006) where we assessed the applicability of a-posteriori access control in a health care scenario. A more technically detailed article about AC2 recently appeared in the IJIS journal, where we focussed however on collaborative work environments (Cederquist, Corin, Dekker, Etalle, & Hartog, 2007). In this report we first provide background and related work before explaining the principal components of the AC2 framework. Moreover we model a detailed EHR case study to show its operation in practice. We conclude by discussing how this framework meets current trends in healthcare and by highlighting the main advantages and drawbacks of using an a-posteriori access control mechanism as opposed to more traditional access control mechanisms

    Architecture of a consent management suite and integration into IHE-based regional health information networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The University Hospital Heidelberg is implementing a Regional Health Information Network (RHIN) in the Rhine-Neckar-Region in order to establish a shared-care environment, which is based on established Health IT standards and in particular Integrating the Healthcare Enterprise (IHE). Similar to all other Electronic Health Record (EHR) and Personal Health Record (PHR) approaches the chosen Personal Electronic Health Record (PEHR) architecture relies on the patient's consent in order to share documents and medical data with other care delivery organizations, with the additional requirement that the German legislation explicitly demands a patients' opt-in and does not allow opt-out solutions. This creates two issues: firstly the current IHE consent profile does not address this approach properly and secondly none of the employed intra- and inter-institutional information systems, like almost all systems on the market, offers consent management solutions at all. Hence, the objective of our work is to develop and introduce an extensible architecture for creating, managing and querying patient consents in an IHE-based environment.</p> <p>Methods</p> <p>Based on the features offered by the IHE profile Basic Patient Privacy Consent (BPPC) and literature, the functionalities and components to meet the requirements of a centralized opt-in consent management solution compliant with German legislation have been analyzed. Two services have been developed and integrated into the Heidelberg PEHR.</p> <p>Results</p> <p>The standard-based Consent Management Suite consists of two services. The Consent Management Service is able to receive and store consent documents. It can receive queries concerning a dedicated patient consent, process it and return an answer. It represents a centralized policy enforcement point. The Consent Creator Service allows patients to create their consents electronically. Interfaces to a Master Patient Index (MPI) and a provider index allow to dynamically generate XACML-based policies which are stored in a CDA document to be transferred to the first service. Three workflows have to be considered to integrate the suite into the PEHR: recording the consent, publishing documents and viewing documents.</p> <p>Conclusions</p> <p>Our approach solves the consent issue when using IHE profiles for regional health information networks. It is highly interoperable due to the use of international standards and can hence be used in any other region to leverage consent issues and substantially promote the use of IHE for regional health information networks in general.</p

    Student Privacy and Learning Analytics: Investigating the Application of Privacy within a Student Success Information System in Higher Education

    Get PDF
    Learning analytics are starting to become standardized in higher education as institutions use the techniques of Big Data analytics to make decisions to help them reach their goals. The widespread use of student information brings forth ethical concerns primarily in relation to privacy. While the overarching ethical issues related to learning analytics are discussed in the literature, there has been a call for more studies to examine how they are put into practice. This case study used interviews and other data resources to determine how privacy is addressed within a student success information system at a public institution of higher education. During the inductive coding process three main themes emerged related to the connection between FERPA and privacy, methods to maintain privacy, and students’ connection with their data. A deductive coding process was also undertaken to determine how the institution addressed the privacy principles put forth in the larger privacy literature. Overall, the findings showed the institution had a minimal understanding of privacy concerns related to learning analytics. This was not unexpected given the length of time the system had been in use at the institution. Recommendations for the institution include developing policies and procedures to guide their use of learning analytics moving forward
    • 

    corecore