3,016 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Anomaly Detection in Streaming Sensor Data

    Full text link
    In this chapter we consider a cell phone network as a set of automatically deployed sensors that records movement and interaction patterns of the population. We discuss methods for detecting anomalies in the streaming data produced by the cell phone network. We motivate this discussion by describing the Wireless Phone Based Emergency Response (WIPER) system, a proof-of-concept decision support system for emergency response managers. We also discuss some of the scientific work enabled by this type of sensor data and the related privacy issues. We describe scientific studies that use the cell phone data set and steps we have taken to ensure the security of the data. We describe the overall decision support system and discuss three methods of anomaly detection that we have applied to the data.Comment: 35 pages. Book chapter to appear in "Intelligent Techniques for Warehousing and Mining Sensor Network Data" (IGI Global), edited by A. Cuzzocre

    Securing Smart Grid In-Network Aggregation through False Data Detection

    Get PDF
    Existing prevention-based secure in-network data aggregation schemes for the smart grids cannot e ectively detect accidental errors and falsified data injected by malfunctioning or compromised meters. In this work, we develop a light-weight anomaly detector based on kernel density estimator to locate the smart meter from which the falsified data is injected. To reduce the overhead at the collector, we design a dynamic grouping scheme, which divides meters into multiple interconnected groups and distributes the verification and detection load among the root of the groups. To enable outlier detection at the root of the groups, we also design a novel data re-encryption scheme based on bilinear mapping so that data previously encrypted using the aggregation key is transformed in a form that can be recovered by the outlier detectors using a temporary re-encryption key. Therefore, our proposed detection scheme is compatible with existing in-network aggregation approaches based on additive homomorphic encryption. We analyze the security and eÿciency of our scheme in terms of storage, computation and communication overhead, and evaluate the performance of our outlier detector with experiments using real-world smart meter consumption data. The results show that the performance of the light-weight detector yield high precision and recall
    • …
    corecore