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Abstract

Existing prevention-based secure in-network data aggregation schemes for the smart grids cannot effectively
detect accidental errors and falsified data injected by malfunctioning or compromised meters. In this work,
we develop a light-weight anomaly detector based on kernel density estimator to locate the smart meter
from which the falsified data is injected. To reduce the overhead at the collector, we design a dynamic
grouping scheme, which divides meters into multiple interconnected groups and distributes the verification
and detection load among the root of the groups. To enable outlier detection at the root of the groups, we
also design a novel data re-encryption scheme based on bilinear mapping so that data previously encrypted
using the aggregation key is transformed in a form that can be recovered by the outlier detectors using
a temporary re-encryption key. Therefore, our proposed detection scheme is compatible with existing in-
network aggregation approaches based on additive homomorphic encryption. We analyze the security and
efficiency of our scheme in terms of storage, computation and communication overhead, and evaluate the
performance of our outlier detector with experiments using real-world smart meter consumption data. The
results show that the performance of the light-weight detector yield high precision and recall.
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1. Introduction
Envisioned as the next-generation power grid, the smart
grid is the modernization of the existing power grid
with advanced bidirectional communication and per-
vasive computing capabilities. The fundamental goal
is to introduce intelligent electricity generation, dis-
tribution, consumption and management into conven-
tional power systems. An essential component of the
smart grid is the two-way communication infrastruc-
ture that connects energy consumers and suppliers for
fine-grained meter readings, real-time status reports
(e.g., functional time and diagnostic flags), dynamic
pricing and control, etc. However, along with all the
advantages, the smart grid with improved communi-
cation and computation capabilities inevitably raises
new security and privacy risks [18, 28]. With forged
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consumption data or electricity price, attackers can
remotely turn on or off electronic devices in target
households, or trigger imbalanced power supplement
to cause power outages and tremendous damages [25].
Moreover, fine-grained usage data collected by smart
meters often contains sensitive information of energy
consumers. For example, a smart meter can learn per-
sonal information such as current location and distance
traveled while charging an electric vehicle [9]. Usage
patterns can also be derived from high-frequency usage
data to depict consumers’ demand profiles in a user
profiling attack [33]. As such information becomes the
primary target of the attackers, they might launch
sophisticated attacks to gain access to the consumption
data of the victim by eavesdropping the communica-
tions, compromising smart meters or utility’s database,
etc. Therefore, it is critical to ensure that metering
data is securely collected, transmitted, stored and pro-
cessed [27].

In the smart grids, a huge amount of real-time
information is collected and reported to the Control
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Center for timely monitoring. For example, the power
consumption data of appliances in a household is
collected by the smart meter and reported to a local
area gateway (i.e., a Collector). As shown in Figure 1,
the collector collects data from a number of smart
meters and forwards it to the control center for further
analysis. For difference management purposes, the
data is collected at different frequencies. For example,
summary data for periodic power usage is collected at a
low frequency, while usage data for billing with non-
constant tariffs or real-time optimization is collected
at a high frequency (e.g., every 15 minutes). To report
the data, a simple and easy-to-implement approach is
to establish a connection between each smart meter
and the collector. To protect users’ privacy, their
consumption data should not be accessed by the local
collector and thus need to be encrypted. However, this
end-to-end encryption approach will incur an excessive
amount of traffic in the network, especially when
collecting the high-frequency smart meter data.

Some management and control applications in the
control center only require statistical measurements
of the meter data, such as summation, average, or
a periodic maximum. Based on this observation, in-
network aggregation, which was first designed for
wireless sensor network applications [10, 15, 19,
26], has been proposed to solve the secure data
collection problem in the Smart Grid Neighborhood
Area Networks (NANs). Figure 1 shows a mesh
network of interconnected smart meters, which form
an aggregation tree. In this network, any smart meter
can report its measurement to the collector via multi-
hop routing through a set of other meters. The core
idea of in-network aggregation is to let the intermediate
nodes to perform aggregation functions (such as SUM
or AVG) over the meter data that is transmitted though
them, and relay only the aggregated result to the next
hop. Obviously, individual meter readings are well
masked by the aggregated results through this process.
Meanwhile, the amount of data transmitted in the NAN
is greatly reduced due to aggregation. Finally, since
the aggregation is performed in a distributed manner,
it also reduces the computation and communication
overhead of the collector, comparing to the previous
centralized approach.

To provide end-to-end security, smart meters need
to encrypt the data before forwarding it to another
meter for in-network aggregation. This ensures that
the smart meters participating in the aggregation
cannot view intermediate or final aggregation results.
Li et al. first proposed an aggregation approach to
encrypt meter data with homomorphic encryption [23],
which supports in-network aggregation operations over
the encrypted data. Later, several secure in-network
aggregation protocols based on modified homomorphic
encryption have been proposed to securely and
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Figure 1. An example of in-network aggregation in NAN.

efficiently route the meter data to the collector [14, 21,
24].

To ensure confidentiality, integrity and authentic-
ity in in-network aggregations, these protocols take
a prevention-based approach [37], which adopts enci-
pherment and digital signature techniques to prevent
the adversary from eavesdropping or altering mes-
sages. Security of such approaches heavily relies on the
assumption that the adversary can not break cryptog-
raphy system. Nevertheless, it neglects the fact that if
a smart meter is compromised the adversary is able
to steal secret keys, insert or alter output aggregation
results to further tamper with critical smart grid func-
tions such as load balancing and smart pricing.

Meanwhile, accidental errors may occur in the
aggregation result due to malfunctioning smart meters
or unreliable wireless transmission channel [36].
Unfortunately, there is only a few work that takes a
difference approach other than prevention to address
this problem. To the best of our knowledge, [22] was
among the first to examine this problem with an
attestation-based solution. The incremental integrity
check proposed in [22] can be used to verify
the aggregate-so-far results based on homomorphic
signatures. It also incorporates anomaly detection at the
collector to identify irregular data values potentially
caused by accidental errors or malicious attacks.

However, to verify that if a meter reading largely
deviates from normal data profile, the centralized
temporal outlier detection approach requires the
collector to store a series of individual metering data
over time, which is costly in terms of communication
and storage. More importantly, this violates the
initial objective of secure in-network aggregation as
hiding the fine-grained individual meter readings from
intermediate parities including the collector.

In this article, we propose a secure in-network
aggregation scheme for smart grids, which supports
realtime, distributed false data detection. In this
approach, we split the aggregation tree into multiple
logical groups, and maintain a sequence of time-series
meter data for all group members at the root of each
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group. Similarly, we maintain a time-series data of the
overall aggregation result at the collector. Then, we
adopt a distance-based outlier detection scheme at the
collector. If the final aggregation result is abnormal,
we initiate a group-based anomaly detection in groups
in a top-down manner, to identify the problematic
group(s) and the problematic meter(s). Since anomaly
detection requires plaintext data, the collector and the
roots of the corresponding groups need to decrypt the
time-series data for the outlier detection algorithm.
Therefore, we also design a data re-encryption scheme
to encrypt the time-series data so that it can be
recovered with a temporary key and thus avoid costly
system-wide key update. In summary, we make the
following contributions in this work:

(1) We present a novel scheme for detecting false
data injection in smart grid in-network aggrega-
tion. We modify the existing in-network aggregation
scheme with dynamic grouping, data re-encryption,
and distance-based outlier detection functions to locate
abnormal smart meter(s). To the best of our knowledge,
this is the first work to integrate distributed anomaly
detection with privacy-preserving in-network aggrega-
tion, in which smart meter data is protected by additive
homomorphic encryption.

(2) We provide a thorough analysis of the security
and complexity of the proposed aggregation and
verification protocols, and compare the performance
of our solution, in terms of storage, computational
and communication overhead, to the conventional data
aggregation approach.

The rest of the article is organized as follows: we
summarize the related work in Section 2, describe
network model, threat model and the secure in-network
aggregation approach in Section 3. Then, we introduce
the preliminaries in Section 4 and present the main
schemes of our solution in Section 5. We provide
the security analysis in Section 6 and evaluate the
performance of the proposed solution in Section 7.
Finally, we conclude the paper in Section 8.

2. Related Work

The mart grids need fine-grained data to efficiently
manage power supply and consumption. A large
amount of user data needs to be reported to the util-
ity company. Therefore, data aggregation is a critical
operation in the smart grids to reduce the communica-
tion overhead. Motivated by the in-network aggregation
solutions for wireless sensor networks, several aggrega-
tion protocols using additively homomorphic encryp-
tion schemes [16, 23, 24], have been presented to pro-
tect end-to-end data confidentiality and privacy against
malicious or “curious” meters en route. However, due
to the vulnerability of the wireless network in NANs,

accidental communication errors or external attackers
may alter the transmitted metering data, thus, the
data integrity was still in risk. Several authentication
protocols for smart grid in-network aggregation have
been proposed using conventional PKI-based digital
signatures [12, 34] or short signature schemes based on
bilinear maps [21]. However, these solutions are either
not compatible with the privacy-preserving in-network
data aggregation or introduce excessive hop-by-hop
verification overhead. Recently, Li et al. proposed an
authentication scheme that supports batch verifica-
tion based on a homomorphic signature scheme [22].
However, all these solutions adopt prevention-based
approaches, which can detect false data injected by
network errors or external attackers without knowledge
of the secrets associated with the encryption and signa-
ture schemes. Although [22] also proposed a centralized
anomaly detection scheme, this scheme introduced a
large lose to in-network aggregation. The focus of our
work is on a solution for efficient detection of falsified
data that are injected into smart grid data aggregation
by compromised or malfunctioning meters in a dis-
tributed manner.

Research on anomaly detection in the area of smart
grids mainly focuses on the detection of abnormal
behaviors in the network layer. In [4], Alseiari et al.
proposed an intrusion detection system that adopted
a mini-batch K-means clustering algorithm to detect
abnormal network activities. Following this direction,
several anomaly detection schemes based on K-mean
clustering have been proposed to identify flooding
attacks and denial-of-service in smart grid home area
networks [29], and general network attacks against the
SCADA industrial control systems [11].

Different from these approaches, our scheme adopts a
non-parametric detection algorithm for time-series data
to identify abnormal metering readings. Besides, with
the fast development of cloud computing platforms,
cloud-assisted schemes for enhancing security and
privacy of Internet of things (IoT) have become a new
trend. Since the cloud-assisted schemes are out of the
scope of this paper, interested authors can refer to [6,
17, 35].

3. Background and Motivation
3.1. Network Model
Wireless mesh has been widely accepted as a promising
communication infrastructure for home area networks
(HANs) and neighborhood area networks (NANs) by
the majority of US utilities. In this work, we consider
a NAN consisting of hundreds of meter nodes (e.g.,
{N1, N2, · · · , Nt} in Fig. 1) and a collector node (e.g.,
N0), which further connects to a utility’s wide area
network. In NAN, each meter node records the real-
time electricity usage data of each HAN and reports
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these data to the collector every a certain period. The
collector is responsible for collecting data and verifying
the data integrity before relaying them to the control
center. Similar as the other in-network aggregation
approaches for smart grid data collection, a spanning
tree (e.g., BFST [23, 24] or MST [21]) is constructed
to include all the smart meters in the neighborhood
into an aggregation tree. As shown in Fig. 1, when
the collector initiates an aggregation query, each smart
meter will perform the specified aggregation operation
over the inputs from all the child nodes, and then
submit the aggregated result to its parent. Finally, the
collector obtains the aggregation result and verifies it.

3.2. Secure In-network Aggregation
Privacy-preserving in-network aggregation: In-
network aggregation has been widely adopted in
wireless sensor networks [10, 15, 19, 26], in which both
sensor nodes and aggregation nodes have restricted
storage capacity and computational power. It fits in
application scenarios where statistical data such as
SUM and AVG instead of individual data is of interest,
and is proven to be an important primitive to reduce
the transmission overhead.

In the smart grids, we consider smart meter not only
as measuring tools but also as potential aggregators.
Compared with traditional sensors, smart meters are
more powerful in terms of storage and computational
capability. Compared with conventional data collection
scheme that requires each smart meter to directly
report to the collector, the in-network aggregation
scheme avoids the excessive communication overhead
introduced by a large amount of individual multi-hop
connection and reduces the computational overhead at
the collector for aggregating all the individual readings.

As aforementioned, to prevent an intermediate
meter from seeing plaintext inputs of its children,
homomorphic cryptosystems that support arithmetic
operations on the ciphertext domain are employed to
encrypt the messages. For most of the aggregation
tasks, additive-homomorphism is expected, where
the addition of two messages can be obtained by
directly performing ciphertext additive operation on
the encrypted messages followed by a decryption
transformation. For example, Paillier cryptosystem [30]
is employed in [23] for privacy-preserving in-network
aggregation. It comprises a pair of aggregation keys
< PKagg , SKagg >, where each meter node encrypts
the individual metering data as Ci = Enc(mi , P Kagg )
and the collector decrypts the aggregation result
(
∏
i=1→t Ci), which can be represented as an encryption

transformation of P Kagg , with the private aggregation
key SKagg .

Signature-based authentication: External adversaries
and malicious smart meters can tamper the in-network

aggregation with falsified meter readings. To protect
the integrity of the metering data, several signature-
based approaches have been proposed [14, 21, 22]. [22]
presented a homomorphic signature algorithm based
on a short signature scheme using bilinear pairing. It
assumes all the smart meters use a same private signing
key SKsig to generate the signature σi , which can be
aggregated as

∏
i=1→t σi along with the in-network

aggregation of the ciphertext messages. In the end, the
collector can perform one batch verification to check the
integrity of the final aggregation result with the final
aggregation signature.

3.3. Challenges and Our Solution
The secure aggregation approaches introduced above
can effectively defend against the weak external attackers
who can eavesdrop or alter the transmitted messages
without knowing the secrets associated with the
encryption or authentication, and the honest-but-curious
internal attackers who properly follow the protocol with
an attempt to sniff confidential data from the relayed
messages.

However, when a strong external attacker compro-
mises a smart meter, he can take full control of the
node. With all the associated secrets, the attacker can
inject falsified data or alter the aggregation outputs.
Such outputs are properly encrypted with valid sig-
natures. Thus, it is extremely difficult, if not impossi-
ble, to detect whether the aggregation is polluted by
an attacker through the prevention-based approaches
which rely on the security of secret keys. Besides, in-
network data aggregation is a lossy information com-
pression process because all individual meter readings
are hidden during hop-by-hop data aggregation. The
collector can not tell which meter injects falsified data
to the aggregated result. Thus, data aggregation makes
it more difficult to identify attack source. Similarly,
malfunctioning meters can generate abnormal readings
into the aggregation, which is indistinguishable from
the regular readings after being encrypted.

As the goal of the attack is to significantly
disrupt the aggregation operations with falsified inputs,
it is reasonable to assume that the falsified data
transmitted by a compromised or a malfunctioning
meter is significantly different from the actual values.
Meanwhile, if the attacker only injects a value slightly
deviating from the true value to avoid being detected,
the falsified data has less impact on the target
application.

In this work, we aim to efficiently detect falsified
data that is intentionally or accidentally injected
into in-network aggregation and further identify the
compromised or malfunctioning smart meter. As
the metering data is collected at a high frequency,
we believe the actual readings from consecutive
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observations should be highly correlated in time
domain. Therefore, we propose an extended kernel
density estimator based mechanism to detect falsely
injected data as temporal outliers.

Kernel density estimator [32] originally used for
anomaly detection in wireless sensor networks (WSN)
cannot be directly applied to smart grid in-network
aggregation. It is a temporal related anomaly detection
technique based on how much the current value
deviates from the recent period of historical values.
Data in WSN is in the cleartext form and accessible by
the detector node (i.e., the sink or neighboring sensor
nodes) directly, however in our aggregation scenario,
data is encrypted and aggregated from neighbor nodes
as well as the intermediate nodes. Moreover, even if
the collector is allowed to recover the final aggregation
result, it is restricted to see the individual metering data
as it is hidden by the aggregation.

Therefore, we design a revised aggregation scheme
to support the transmission and storage of individual
metering data at selected verifiers as time-series data for
detection while not breaking the security and privacy
promises, and a re-encryption scheme to preprocess
the encrypted data on-demand for the detector where
the kernel density estimator is deployed. To reduce
the computation and communication overhead at
the collector, we also propose a light-weight dynamic
grouping scheme to divide the aggregation tree into
connected logical groups and employ the group root
as the verifier for each group. To explicitly explain
our solution, we define the roles of different nodes:
the verifier (root of each group) stores historical data
for all group members and verifies the integrity before
relaying to-be-examined data to the detector; the
detector uses kernel density estimation based scheme
to detect the outlier. Details of the schemes will be
explained in Section 5.

4. Preliminaries
In this section, we describe the bilinear pairing [7] and
proxy re-encryption techniques [5], which are the basis
of our solution.

4.1. Bilinear Pairing
For cyclic groups G and GT of same prime order q, a
map e : G ×G→ GT is a bilinear map if it satisfies the
following properties:

1. Bilinear: for all u, v ∈ G, and a, b ∈ Z∗q, we have

e
(
ua, vb

)
= e (u, v)ab;

2. Computable: there exists an efficient computable
algorithm to compute the map e (u, v) for any
u, v ∈ G;

3. Non-degeneracy: for the generator g of G, e(g, g) ,
1.

4.2. Proxy Re-encryption

Proxy re-encryption scheme allows a proxy to transform
a ciphertext computed under Alice’s public key into
one that can be decrypted by Bob’s secret key. The
proxy re-encryption scheme consists of five algorithms:
key generation, encryption, decryption by Alice, re-
encryption and decryption by Bob (here we call it re-
decryption):

1. Key Generation: Given bilinear map e : G ×G→
GT where g is the generator of G and Z =
e (g, g), Alice and Bob randomly select their
private key SKA = a, SKB = b from Z∗q, and get the
corresponding public key P KA = ga and P KB = gb.
Alice is also able to compute the re-encryption key

RKA→B =
(
gb

)1/a
using only SKA and P KB.

2. Encryption: Given a message m ∈ GT , choose a
random number r ∈ Z∗q, and the ciphertext can be
calculated as CA = Enc(m, PKA) = (Zr ·m, gra).

3. Decryption(Alice): Alice can decrypt the cipher-
text as m = Dec(CA, SKA) = Zr ·m

e(gra,g1/a) = Zr ·m
Zr .

4. Re-encryption: After the proxy receives the
re-encryption key generated by Alice, it can
transform CA to CB as

CB = Re_Enc(CA, RKA→B)

= (Zr ·m, e (gra, RKA→B))

=
(
Zr ·m, e

(
gra, gb/a

))
=

(
Zr ·m,Zrb

)
.

5. Decryption(Bob): Bob can recover the correspond-
ing message as

m = Re_Dec (CB, P KB) =
Zr ·m(
Zrb

)1/b
.

5. Proposed Solutions

In this section, we propose an efficient and reliable
anomaly detection protocol for secure in-network
aggregation in smart grid NAN. It consists of a light-
weight grouping scheme, a revised in-network aggregation
and in-group incremental verification scheme, a data re-
encryption scheme, and an group-based anomaly detection
scheme.
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Figure 2. An example of dynamic grouping: the dotted areas are
groups and the dark nodes are the root.

5.1. Light-weight Dynamic Grouping

Previous signature-based authentication protocols [14,
22] are centralized approaches in which the collector
is assumed to verify the authenticity of the final
aggregation result and locate the compromised meter.
To do so, the collector has to require each meter’s
individual data, which will inevitably increase the
computation and communication overhead at the
collector, since intermediate aggregation results and
individual data are not transmitted to the collector in
the aggregation. As such, we employ a light-weight
dynamic grouping scheme to divide the aggregation
tree into multiple groups, as shown in Fig. 2, for
distributed verification and anomaly detection.

The idea is to employ a grouping function F such
that each node can calculate its probability of becoming
a root with its own topological variables and compare
with a pre-defined threshold Tr to decide if it is selected
as the root of a group. For example, in Fig. 2, node
Ni calculates Fi > Tr , it then determines itself as the
root and all other nodes below itself but not grouped
yet as its group members. The grouping decisions are
made in a bottom-up fashion. Once the root of a group
is determined, an intra-group ID is assigned to each
member.

For the grouping, we expect all the groups are of
approximately a same size to balance the verification
load. To perform on-demand distributed anomaly
detection, we will store the historical metering data of
all the group members at the root, therefore a small
group size is desired. Considering the communication
overhead of multihop transmission for historical data
collection, although the transmission frequency is much
smaller than the aggregation frequency, we still prefer
a "short" group (the height of a group is defined as the
maximum number of hops from the root to any group
member). With all these considerations, we suggest a

grouping function

Fi =
(
1 − 1

e(αθ
hi+βni)

)γ
which takes two positive integers (ni , hi) as inputs and
outputs a real number between (0, 1), where ni and hi
are the number of members and the height of a node
i if node i is the root, respectively. α, β, θ, and γ are
the parameters to indicate the impact of ni and hi to the
grouping decision. For a preferred grouping function,
Fi increases with the group height and the group size. If
a node has larger ni and hi , it has higher probability to
become a root. Considering the great impact of group
height to the communication overhead, we make Fi
increases more rapidly with hi . The parameter selection
and grouping result will be discussed in Section 7.

With the newly constructed logical groups, we expect
to distribute the verification and detection load from
the collector to the root of the groups. So, the root
needs to store time-series individual data for each
group member, which will be collected during regular
aggregations. Since the data is still encrypted with the
public aggregation key, if the root does not collude with
the collector (to disclose the data or obtain the secret
aggregation key), the privacy of individual metering
data is retained. When the root receives a request for
verification, it first launches an in-group incremental
verification based on the aggregation signatures, similar
as in [22]. If the intermediate aggregation result is
proven to be valid, it calls for in-group anomaly
detection to further examine the input of each member.
Before sending the to-be-examined input and the
historical data to the selected detector node, the data
needs to be preprocessed (i.e., re-encrypted) so that it
can be recovered by the detector (we will explain this in
section 5.3).

5.2. Revised in-network aggregation
Secure in-network aggregation requires both the
encryption algorithm and the signature algorithm are
additive homomorphic. In the pre-processing of the
data for anomaly detection, we further require that
the encrypted data supports re-encryption operation
to allow the verifier (i.e., the root of the group) to
transform the metering data that is originally encrypted
under the public aggregation key into a form that can
be recovered by the detector’s private key. In this work,
we use an ElGamal-based scheme to achieve additive
homomorphism, which can also be integrated with
the collusion resistant re-encryption scheme based on
bilinear maps.

System Initialization. We assume that a trusted collector
can initialize the whole system. It first generates
system parameters (q, g,G,Gt , e, Z = e(g, g)), and then
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it calculates all required key pairs in our scheme as
follows:

1. Select a random a ∈ Z∗q to generate the aggregation
key pair < SKagg = a, P Kagg = ga >. All meters
share P Kagg to encrypt their messages, which
supports privacy-preserving data aggregation.

2. Select a random s ∈ Z∗q to generate the signature
key pair < SKsig = s, P Ksig = gs >. All meters
share SKsig = s to sign their messages, which
supports the batch verification on the collector.

3. Generate individual key pair for each meter as
< SKd = vi , P Kd = gvi > which vi ∈ Z∗q is a random
number. If a meter is a detector di , this key pair is
also used as the detection keys.

4. Generate the re-encryption key RKagg→di = gvi /a,
when the group-based anomaly detection is trig-
gered.

In the end, the collector securely transmits the
system parameters (q, g,G,Gt , e, Z, P Kagg , SKsig ) and
individual detection keys to each meter node.

Leaf Node Aggregation. We slightly change the in-
network aggregation and data signing process in [22] to
make it fit into our scenario. Here we briefly illustrate
the process with an example: as shown in Fig. 2, the
leaf node Nx performs the following steps to generate
its ciphertext and signature for its own readingmx ∈ Z∗q:

1. Map mx to Mx = Zmx ∈ GT .

2. Generate the ciphertext Cx = Enc(Mx, P Kagg ).

3. Use SKsig to make a signature σx as

σx = Sign(mx, SKsig ) = (gmxhx)s,

where hx = H(IDx ||T S). H() is the hash function
and T S is the current time stamp which can
prevent the replay attack.

4. Send the tuple < Cx, Cox , σox > to the parent meter
Nz, whereCox and σox are the aggregation data and
signature which are output by Nx, respectively.
Here, as Nx is the leaf node, we have Cox = 1
and σox = σx. In our scheme, each meter needs to
send its data to its parent which is responsible
for aggregation. Since the data Cx is collected in
the aggregation process and stored at the parent
node, it faithfully demonstrates the authenticity
of Cx, which is precisely the data injected into the
aggregation.

Intermediate Node Aggregation. For an intermediate
node, say Nz in Fig. 2, has two inputs, e.g., the two
to-be-aggregated ciphertexts Cx and Cy as well as
the corresponding signatures. First, Nz generates its
own ciphertext and signature as a leaf node. Then, it
computes the aggregation data and signature as

Coz = Cx · Cox · Cy · Coy
σoz = σz · σox · σoy ,

and outputs the tuple < Cz, Coz , σoz > to node Ni . Note
that, for anomaly detection purpose, each intermediate
node needs to store its children’s individual data for a
pre-defined period. In the example,Nz stores Cx and Cy
for its child Nx and Ny .

Final Result Reading and Verification. So on so forth, when
the collector receives the tuple < Cw, Cow , σow > fromNw
and the ones from Nd and Nh, it aggregates them to
obtain the final result C and σ , and then checks the
integrity as the following steps:

1. Recover the plaintext M = Dec(C, SKagg ).

2. Reversely map M back to m.

3. Generate the hash value for each participant node
as

hi = H(IDi ||T S)

4. Check the integrity using batch verification as

e(σ, g) ?= e(gm · h1 · h2 · · · ht , P Ksig )

The correctness of batch verification.

e(σ, g) = e(σ1 · σ2 · · · σt , g)

= e((gm1h1)s(gm2h2)s · · · (gmtht)s, g)

= e(g(m1+m2+···+mt)h1h2 · · · ht , gs)
= e(gmh1h2 · · · ht , P Ksig )

If the batch verification succeeds, the collector will
report the final result to the control center. However,
if the aggregated result significantly deviates from
the normal range, it indicates some falsified data has
been injected in the last aggregation round. Thus, it
will follow the incremental verification scheme [22] to
identify logical groups with invalid outputs.

5.3. Group-based anomaly detection
Through the incremental verification, we can identify
the groups whose intermediate aggregate result has
been tampered by the falsified data in a top-down
pattern. Once locating such group, we will call the
group-based anomaly detection to examine the input
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from each group member. The anomaly detection is
pairwise: it involves the root of the group, serving as the
verifier which stores the historical data, and a randomly
selected neighbor node with light-weight kernel density
estimator installed, serving as the detector which detects
the outlier.

Data collected at the verifier. According to the revised
data aggregation scheme, individual metering data of
each member node is transmitted to the group verifier,
and stored in a fixed-size queue. It creates a random
sample set R for the values collected in the recent
period of time where the size of R is represented as
|R| = t, and will be used as historical data in anomaly
detection. Accordingly, the size of the verifier’s dataset
T is t ∗ gsize, where gsize is the group size.

At each aggregation round, it is assumed to update
the oldest historical data with the latest value. However,
as the metering data is collected at a high frequency,
it may not be necessary to update the data frequently.
Moreover, per-round update will cause undesired
communication overhead that we want to avoid by
in-network aggregation. Therefore, we propose a slow
update scheme that allows only one member node to
submit an update per aggregation round. Hence, only
one node is affected per round, whose communication
overhead caused by anomaly detection is only doubled
(i.e., two output readings at each node) comparing
to the original aggregation scheme. In particular, at
round n, every node computes (n mod gsize). Only the
node whose intra-group ID matches (n mod gsize) is
allowed to send the update in terms of Ci in the output
tuple.

Data Re-encryption. To identify the abnormal data, we
need to compare the current reading to the historical
data distribution. However, all records are encrypted
under the aggregation key. It is absolutely insecure for
the collector to share the secret aggregation key a with
the verifier, not only because this will allow the verifier
to view all the historical readings of its group members,
but more importantly, the verifier can abuse this secret
to recover all future encrypted data in the aggregation.
Key refreshing may also not be a good solution, as apart
from the high cost of key refreshment, it will lead to
inconsistency in the encryption form of the historical
data (i.e., part of the data is encrypted by P Kagg and
part of them is encrypted by P Knewagg ), and further causes
difficulty to key management.

Therefore, we propose a data re-encryption scheme:
the verifier (with the help of the collector) randomly
selects a neighbor node, say Nd , as its detector, and
obtains the re-encryption key RKagg→di = gvd /a from
the collector. It then performs the aforementioned re-
encryption operation over the recent data stream (e.g.,
data stream of Np is {Cpt , Cpt−1

, ..., Cp1
}), and sends the

re-encrypted stream to the detector, which can recover

Mp = {mpt , ...mp1
} with its private detection key vd . The

security of individual metering data is guaranteed: for
the verifier that stores the data, it will never be chosen
as detector and thus it cannot obtain a re-encryption
key for itself; for the detector, although it can recover
the individual metering data in the last t rounds, but it
doesn’t know to whom the data belongs. Therefore, we
believe the security and privacy is well maintained in
the re-encryption approach.

Group-based anomaly detection. We consider the meter-
ing data in smart grid aggregation as a temporal stream-
ing data without spatial correlation. That is, data dis-
tribution changes only over time. This assumption is
rational because electricity usage is household-sensitive
and the similarity in neighboring meters is trivial.
We further assume the time when anomaly occurs is
unpredictable, that is, we don’t have priori knowledge
about data distribution at a given time. Therefore, we
need an anomaly detection scheme that can efficiently
model distribution for streaming data and effectively
approximate an unknown data distribution. It should
also be light-weight, which is computationally efficient
and requires very small memory.

In this work, we adopt the outlier detection model
used in wireless sensor networks [32] and modify it to
fit in our scenario. This model uses a distance-based
anomaly definition: “a point p in a dataset T is a (D, r)-
anomaly if less thenD points in T lie within distance r from
p.” It approximates the data distribution in dataset T
based on the kernel density estimator, and then computes
the density of the data space around the value which
needs to be detected. If the number of neighboring
data points is less than D, the distance-based outlier is
identified. We briefly introduce the method as follows:

The detector first maps the sample set R = Mp =(
mp1

, · · · , mpt
)

into the interval [0, 1]. This requirement
can be satisfied easily through normalization. Let kp (x)

be the kernel function for Np, where
∫ 1

0 kp (x) dx = 1
for all values in Mp. The underlying distribution fp (x)
for T can be approximated by the following function
according to the values in the sample set Mp:

fp (x) =
1
t

∑
mpj ∈Mp

k
(
x −mpj

)
.

Let us select the Epanechnikov kernel that is easy to
integrate as the kernel function, then we have

k (x) =

 3
4

1
B

(
1 −

(
x
B

)2
)

,
∣∣∣ xB ∣∣∣ < 1

0 , otherwise

where B is the bandwidth of the kernel function. With
a similar setting as in [32], we set B as

√
5σ

∣∣∣Mp

∣∣∣− 1
5 ,

where σ is the standard deviation of the values in Mp.
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With the distribution function fp (x) forNp, the detector
estimates the number of values that are within the
distance r from mp as

N
(
mp, r

)
= |W |

∫ r

0
fp (x) dx

where |W | is the size of the dataset. In our work, since
we aim to identify an outlier in a data stream, the
dataset is a sliding window consisting of a number of
meter readings within a period. If this number is less
than the threshold D, mp is identified as an outlier.

6. Security Analysis
In this section, we analyze the security of the proposed
scheme.

(1) Data of individual meters are aggregated in a privacy-
preserving way. In the proposed scheme, each meter
encrypts its individual data before reporting it to the
parent node. The ciphertext of an individual reading is
in the form of (e(g, g)r ·m, gra). To obtain the plaintext
m, the adversary needs to find the value of e(g, g)r .
However, without knowing the private key a, it is
impossible for the adversary to obtain e(g, g)r from
the paring e(∗, ∗) and gra. This is because the semantic
security of the pairing-based ElGamal encryption is
equivalent to the infeasibility of the Decisional Bilinear
Diffie-Hellman problem (DBDH), which is proven to be
very hard to solve.

In the in-network aggregation, an intermediate node
receives individual meter readings in the ciphertext
form, and performs homomorphic additive aggregation
directly over the encrypted data. It can never access the
plaintext data of its child nodes. Given two ciphertext
messages (e(g, g)r1 ·m1, g

r1a) and (e(g, g)r2 ·m2, g
r2a), the

aggregated result is in the form of (e(g, g)r1+r2 ·m1 ·
m2, g

(r1+r2)·a), so that the semantic security of the
aggregated ciphertext remains.

The security of the data aggregation depends
upon the proxy re-encryption scheme [5] which
is based on ElGamal. The semantic security of
ElGamal with this re-encryption function is maintained
under the Decisional Bilinear Diffie-Hellman Inversion
Assumption (DBDHI) which has been proven hard in
the generic group model by Dodis and Yampolskiy [13].

Finally, the collector is allowed to recover the final
aggregated result. However, it is unable to separate
any individual data of a single smart meter from
the aggregate result. Therefore, even if an adversary
successfully compromises an intermediate node or the
collector’s database, he cannot harm individual users’
private data.

(2) The data integrity of all participant meters is
protected. In the proposed scheme, signature key SKsig
is securely distributed in the system initialization
phase, so the external attackers cannot generate valid

signature for his forged data. Any external attacks
will be detected by the batch verification scheme only
through the final aggregate result and signature, which
based on [7, 8]. The proposed scheme is secure, since the
aggregate signature scheme is proven secure in a gap
group where Decisional Diffie-Hellman problem (DDH)
is easy, but the Computational Diffie-Hellman problem
(CDH) is hard, an adversary is incapable of forging
an aggregate signature and thus the data integrity is
guaranteed.

(3)The data provided to the detector is faithful. To
verify the data of one node, say Nx in Fig. 2, the
detector needs to analyze the data (Cx) injected to
the aggregation result in the current round. Since the
individual metering data of each node is stored and
aggregated by its parent node Nz, a meter can not forge
a new data for anomaly detection.

(4)The risk of data leakage in anomaly detection is
eliminated. In traditional anomaly detection, a same
node works as the role of verifier and detector at
the same time. Since the anomaly detection only can
be done over plaintexts, the node has the capacity
of transforming ciphertexts to cleartexts. In this case,
other nodes’ privacy data will be revealed to the
detector. However, in our solution, the separation
of verifier and detector only allows the verifier to
transform data, and the detector to perform anomaly
detection. To successfully steal users’ data, an attacker
has to arrange two compromised nodes as the verifier
and the detector, respectively. The proposed eliminate
this risk through making the collector randomly select
the detector so that the attacker cannot determine in
advance which node will become the detector. Besides,
as the verifier is also chosen dynamically in grouping
phase, it is difficult to launch a colluding attack to steal
users’ private data.

7. Performance Evaluation
In this section, we evaluate the performance of our
scheme in terms of grouping result, storage overhead,
communication overhead and computation overhead.

7.1. Grouping Result
First, we analyze how the value of the grouping function
changes along with the two variables hi and ni and
discuss how to set the value of the parameters properly.
Given the grouping function Fi = (1 − 1

e(αθhi +βni )
)
γ

, we

vary the value of group height hi and group size ni
at different parameter settings. As shown in Fig. 3 ,
α and β affect the gradient of the curve and γ affects
the convexity of the curve. From Fig. 3(d), we can see
when ni and hi are both small, the probability of a
node becoming the root is approximately zero. As size
and height of a group increase, the probability rapidly
approaches a large value (e.g., 70%).
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Figure 4. Grouping Result

We then test the grouping scheme in a simulation,
where 500 meters with 100 feet transmission range are
randomly distributed in an area of 1000 × 1000f t2. We
generate the spanning tree, which is rooted at the collec-
tor, using Kruskal’s algorithm [20]. In our simulation,
we set the parameters as α = 0.06, β = 0.3, γ = 6, θ =
3, Tr = 72%. The dynamic grouping result is shown in
Fig. 4. From Fig. 4(a), we can see that the size of most
groups is small, with a mean of 6. Therefore, the verifi-
cation load for most groups is small. This also indicates
that the roots of most groups only need a small storage
for the time-series data of group members. Similarly, as

shown in Fig. 4(b), the height of most groups is also very
small, which indicates the multi-hop communication
overhead is low.

7.2. Computation Overhead

In every aggregation round, a member node needs to
perform an encryption, an aggregation, and a signing
operations. The group root needs an additional re-
encryption operation, similarly, the detector needs an
additional decryption over the re-encrypted data when
the anomaly detection is triggered.
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To assess the computational overhead, we conduct
the experiment with Java pairing-based cryptography
(JPBC) [3] library on a 2.8 GHz processor PC. The
implementation chooses a 160-bit order elliptic curve
group G based on a supersingular curve y2 = x3 + x
with embedding degree of 2 over a 512-bit finite field.
The computation overhead is evaluated in terms of
the number of required pairing and exponentiation
operations in G and GT . Under the described setting, it
costs 14.21 ms to perform an exponentiation operation
in G, 1.10 ms for exponentiation operation in GT , and
11.09 ms for the corresponding pairing operation. The
average encryption and decryption cost 15.70 ms and
24.39 ms respectively. The measured processing time
for each operation is then listed in Table 1.

Compared to the non-aggregation scheme, our
scheme requires an additional aggregation operation
at each intermediate nodes. However, as shown in
Table 1, the cost of the aggregation operation is
very small. On the contrary, our scheme avoids the
expensive operations for decrypting individual meter
data and verifying their integrity at the collector.
Therefore, our scheme reduces the computational
overhead significantly.

To quantify the increased data collection perform in
the proposed aggregation scheme, we first define the
end-to-end processing time, which is the delay between
the time point when the meters start processing
individual data and the time point when the collector
completes all the operations and obtains the correct
aggregated result in plaintext. It consists of the
processing time at nodes (smart meters and the
collector), and the communication time. Since we will
discuss the communication cost in Section 7.4, here
we primarily focus on the delay at intermediate nodes,
which can be calculated as:

Delay = Tcollector + Tmeters

Tcollector denotes the time spent by the collector
for recovering the expected statistic such as SUM,
including signature verification and decryption. Tmeters
denotes the time spent by the meters for encryption,
signing, and aggregation (only incurred in our scheme)
operations.

In particular, at the collector, the cost consists of
decryption and signature verification. Our scheme only
needs one batch verification and one decryption, so
the cost Tcollector is (Tver + Tdec). In contrast, in non-
aggregation scheme, since the collector needs to verify
and decrypt each individual meter’s report, the cost is∑|N |

1 (Tver + Tdec).
For meters, since all the meters can perform

encryption and signing simultaneously in the non-
aggregation scheme, only one encryption and one
signing operation should be included in the overall cost.

Thus, the cost Tmeters = (Tenc + Tsign). In our scheme, in
addition to encryption and signing operations which
are conducted by all meter simultaneously, all non-
leaf nodes need to perform aggregation over children’s
ciphertexts and signatures. Since the aggregation
proceeds hop-by-hop along the aggregation tree in
a bottom-up manner, the overhead introduced by
aggregation is proportional to the height of the
spanning tree. For example, in an aggregation tree
whose average degree is 3 (e.g., degree=2 represents
a binary tree), its height is about log32n and needs 8
aggregations for 3 children in total. Therefore, Tmeters =
8Tagg ∗ log32n.

As shown in Fig. 5(a), we calculate the Delay of our
proposed scheme and the one of the non-aggregation
approach, with the varying number of meters. We
can see that the delay introduced by computation
in the traditional non-aggregation scheme increases
linearly with the number of smart meters, while the
performance of our proposed scheme is much better
and negligibly affected by of the network size.

7.3. Storage Overhead

To support distributed group-based anomaly detection,
the proposed solution requires the root of each group
to store individual data for its members and preprocess
the historical data for the detector when necessary.
Therefore, we need to evaluate the additional storage
overhead that the group-based anomaly detection
introduces to the root.

As the verifier of the anomaly detection scheme, the
root of each group needs to store a queue of individual
metering data for the recent t rounds aggregation for
each group member. A larger t indicates a higher
accuracy in anomaly detection. However, t cannot
increase unrestrictedly, in fact, it should be bounded
by the storage capacity of the smart meter. Given the
average group size as 10 (adjustable by the parameters
and threshold in the grouping function), in order to
achieve a reasonably high detection accuracy (more
than 90%), as also assumed in [32], the size of the
sample set (the queue length) is 1024, and thus the
dataset size for all member nodes is 10240. If we
choose 160-bit elliptic curve over a 512-bit finite field
as mentioned in Section 7.2, each ciphertext size is
1024 bits, thus, the total memory needed for storage is
1.04 × 107 bits. In practice, a communication module of
a smart meter [2] has 4MB RAM and 8MB flash memory.
Therefore, only 16% memory is required for storing the
historical data, and the storage overhead introduced by
the anomaly detection is far below the capability of the
current smart meter.
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Table 1. Computation Cost

Operations Exponentiation in G Exponentiation in GT Pairing Encryption Decryption
Time (ms) 14.21 1.10 11.09 15.70 24.39

Operations Agg_Cipher Re_Enc Re_Dec Signing Verification Aggregation
Time (ms) 0.08 10.30 1.56 15.33 21.52 0.07
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Figure 5. Overall Computation & Communication Overhead

7.4. Communication Overhead
To better analyze the communication overhead,
we compare our scheme with Li’s hop-by-hop in-
network aggregation scheme [22] and traditional
non-aggregation data collection. We consider an
aggregation tree of n nodes (including the collector),
where the height is h and the average degree of
each node is d. We use the number of hops in the
aggregation and the messages size as the metric, so
the overall communication overhead is C = Hop ∗ Size.
In terms of hops, it is easy to see the communication
overhead of hop-by-hop aggregation is

Hhop−by−hop = n − 1 = O(n),

while for the no-aggregation approach, the communica-
tion overhead is

Hnon−aggregation =
h∑
i=1

i · di

=
hd(h+2) − (h + 1)dh+1 + d

(d − 1)2

= O(n · logn).

The communication in the proposed scheme consists
of two parts, communication in data aggregation and
communication in anomaly detection. First, we consider
the revised aggregation scheme, which causes little
extra overhead compared with hop-by-hop aggregation.
In the proposed scheme, to ensure the non-repudiation,
in addition to the regular aggregation communication

per round, each node transmits its individual data
to its parent, which introduces n − 1 hops more
communication. Besides, to collect historical data,
within each group only a member sends its individual
reading to the root of the group to update its historical
data in each round. Thus, the increase of hops depends
on the product (p) of the group number and the average
height of each group. From the grouping result, we can
see the number of groups is almost 1

6 of n and the group
height is about 3. Thus, this product is less than n, and
the communication overhead of the proposed scheme is

Hproposed = n − 1 + p < 2n.

In this scheme, for a meter node Ni , the message is
in the form of Ci ||Coi ||σoi of size 2560(= 1024 + 1024 +
512) bits in our experiment. Thus, the corresponding
communication overhead in data aggregation is Cagg =
2560 ∗Hproposed , which is smaller than 5120n. In
the traditional non-aggregation approach and hop-
by-hop aggregation approach, each message includes
both ciphertext and signature, so the message size is
1536. Thus, the overall communication overhead is
1536nlog n and 1536(n − 1), respectively.

Next, we discuss the communication overhead in
anomaly detection where the historical data will be
transmitted to the detector. If we distribute this
overhead to each aggregation round, it indicates a
cost of one additional ciphertext from the group root
to the detector. Therefore, the overall communication
overhead will be

Cproposed = Cagg + Cver = 5120 ∗ n + 1024 ∗ n = 6144 ∗ n.
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Fig. 5(b) shows that the communication overhead
varies with the number of meters. Compared to hop-
by-hop aggregation, the proposed scheme has higher
communication overhead due to security requirements
for ensuring non-repudiation and providing historical
data for anomaly detection, but it is still much better
than the traditional non-aggregation approach.

7.5. Anomaly Detector Performance

Dataset: In our experiment we used real-life data
sets [1] from the Commission for Energy Regulation
(CER) who provided the electricity usage data during
2009 and 2010 with over 5,000 Irish homes and busi-
nesses participating. All participants had an electricity
smart meter installed in their homes/premises, which
recorded power consumption every 30 minutes. Typ-
ically, most meters contained 25536 data entries that
are time sequences in 532 days (48 records per day).
All personalized data including meter location informa-
tion was removed in order to preserve anonymity. The
analysis to the spatial correlation of different meters
is impossible, hence a temporal-correlation anomaly
detection algorithm is more practical in the real world.
In our experiment we considered all records as valid
and untampered data and normalized them to fit in
the [0,1] interval. We used synthetic data as outliers for
each meter which were generated based on the meter’s
records and randomly sampled the real values from the
original dataset as tested normal values.

Metrics: We used two typical measures as metrics,
namely precision and recall. In our scenario, precision
represents the ratio of the number of correctly detected
outliers by our algorithm to the number of picked-
up items by our algorithm. Recall represents the ratio
of the number of correctly detected outliers by our
algorithm to the total number of outliers in the data set.

Accuracy: We randomly selected 10 meters from all
5,000 meters, recorded the averages over 20 runs of the

experiment for each meter, and finally, got the average
precision and recall of the 10 meters for our evaluation.

Each time, we synthesized 100 outliers and randomly
sampled 100 real values as normal values from the
original dataset. In our experiments, we changed the
deviation degree of outliers, that is, how different the
outliers are from the normal values. For example,
the range of outliers was set as [µ + 2σ, µ + 4σ ] and
[µ + 3σ, µ + 5σ ], where µ and σ stand for mean and
standard deviation of all data entries of a meter,
respectively.

We picked up (40, 0.01)-outliers, namely, a value is
identified as an outlier if the number of its neighbors
within distance of 0.01 is less than 40. Fig. 6 depicts the
changes of precision and recall with deviation degree
of outlier. The precision is very stable regardless of
how much the outliers deviate from the normal values,
indicating there is only very few false positives in
our detection scheme. This may because the proposed
scheme fit the underlying distribution of readings very
well. Another reason of high precision is that, since
there exist few extreme values in the original dataset,
we have a small chance to pick them into the sample set
by randomly sampling normal values from the original
dataset.

For recall, when the values of outliers are close to
the normal values, the detector achieves a very low
recall (around 51%), which means that many low-
suspicious outliers are omitted. This is because those
low-suspicious outliers are very similar to the normal
meter readings with large values in the historical
dataset. In contrast, when the outliers remarkably
deviate from the normal values, the recall approaches
to 100%.

Therefore, to improve the detector performance
under the circumstance of a low deviation degree, we
consider to use the data at the same time point as the
sample. We found that the metering readings at the
same time of a day, say 12:00 p.m., are more closer to
each other than to the data at a different time point,
say 7:00 a.m. So, we randomly picked a meter from the
set of 5,000 meters to study, and calculated the mean
and standard deviation of its hourly readings (24 hours
starting from 1 a.m.) over 532 days.

As shown in Fig 7(a), we can see that the power
consumption at different time is very different due
to human activities and energy consumption habits.
Therefore, anomaly detection using data at the same
time may yield better results. For example, when the
anomaly detection module is triggered at 12:00 p.m.,
it is more reasonable for the detector to compare the
suspicious value to the data of 12:00 p.m., instead of
the entire data. Here, we refer to the previous detection
scheme as the overall detector and the new scheme as the
fine-grained detector. We still used mean and standard
deviation of each time point to generate the outlier sets
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Figure 7. The comparison of overall detector and fine-grained detector for a specific meter. Fig 7(b) and 7(c) compares the performance
of (40, 0.01)-outlier detector under different deviation degrees of outliers, where mean and standard deviation are set to the values
at time point 5 in Fig 7(a). Fig 7(d) compares performance of different (D, r)-outlier detector under the fixed deviation degree
[µ + σ, µ + 3σ ] at time point 20 in Fig 7(a).

and then combined 24 outlier sets for 24 hours as the
outlier set for the overall detector.

Fig 7 compares precision and recall of the two
schemes under different deviation degrees. In Fig 7(a),
we can see that this randomly selected meter has the
least standard deviation at time point 5 (i.e., 5 a.m.),
and the largest s.d. at time point 20. Since we want to
study how the intrinsic properties of the data affect the
detection accuracy, we measure the performance of the
(40, 0.01)-detector using data at time point 5 (as shown
in Fig 7(b) and 7(c)) and data at time point 20 (as shown
in Fig 7(d)).

When the data has a narrow distribution, i.e., with
a small standard deviation such as at time point 5,
we can see that both schemes achieve a similar high
precision. In terms of recall, the fine-grained detector
outperforms the overall detector, as expected. Even
when the deviation degree of outliers is very small, the
fine-grained detector still achieves a higher recall.

Next, we study the data whose values are less
consistent, i.e., with a large standard deviation, such as
at time point 20. We measure the performance of the

detector with a small deviation degree of outlier ([µ +
σ, µ + 3σ ]) and show its precision and recall in Fig 7(d).
We can see that the detector achieves a very high recall,
but a small precision. To balance the precision and
recall, we can adjust the detector setting. When we use a
(25, 0.03)-detector, both recall and precision are around
90%. Overall, the fine-grained detector is more stable
and provides high precision and recall.

Discussion: The goal of a detector performed by a smart
meter is to identify an outlier in a data stream, which
is a series of meter readings drawn from an unknown
distribution. Since power consumption varies over time
and smart meter is a resource-constrained device, the
detection algorithm should be light-weight and can
adapt to the changes of the data. Distance-based outlier
detection, which relies on a light-weight kernel density
estimator, is proved to be an efficient scheme to identify
an outlier fast and at low cost [32]. Therefore, it is a
good option for anomaly detection in the smart grid
applications.

However, in distance-based outlier detection, in order
to achieve a high detection accuracy, the threshold must
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be specified accurately. In our experiments, we used a
universal setting for detector at different smart meters,
since we found that the data points of the tested meters
show similar densities over time. Therefore, the simple
distance-based outlier detection scheme can achieve a
good performance in our experiments. In reality, due
to different power consumption patterns in different
households, a universal threshold for all meters may
not exist. Consider the huge number of individual
meters, it is challenging to determine the settings for
all meters. In our future work, we will examine other
efficient detection approaches that do not require subtle
parameter setting, such as local metrics based outlier
detection using multi granularity deviation factor [31].

8. Conclusion
Existing prevention-based secure in-network data
aggregation mechanism for smart grid systems cannot
effectively detect accidental errors and falsified data
injection by malfunctioning or compromised meters. In
this paper, we first introduce a light-weight anomaly
detector based on kernel density estimator to localize
false data injected into the aggregation. To reduce the
overhead at the collector, we design a dynamic grouping
scheme to divide meters into multiple connected
groups and distribute the verification and detection
load among the root of the groups. A novel data re-
encryption scheme based on bilinear mapping is further
proposed to transform the data previously encrypted
under the aggregation key into a form that can be
computed by the detector to ensure the security and
privacy of individual metering data, which are critical
for anomaly detection. Performance of the anomaly
detector is evaluated in terms of the memory usage
and communication overhead, and proved to be light-
weight for the current smart meter configuration.
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