6,750 research outputs found

    FedCIP: Federated Client Intellectual Property Protection with Traitor Tracking

    Full text link
    Federated learning is an emerging privacy-preserving distributed machine learning that enables multiple parties to collaboratively learn a shared model while keeping each party's data private. However, federated learning faces two main problems: semi-honest server privacy inference attacks and malicious client-side model theft. To address privacy inference attacks, parameter-based encrypted federated learning secure aggregation can be used. To address model theft, a watermark-based intellectual property protection scheme can verify model ownership. Although watermark-based intellectual property protection schemes can help verify model ownership, they are not sufficient to address the issue of continuous model theft by uncaught malicious clients in federated learning. Existing IP protection schemes that have the ability to track traitors are also not compatible with federated learning security aggregation. Thus, in this paper, we propose a Federated Client-side Intellectual Property Protection (FedCIP), which is compatible with federated learning security aggregation and has the ability to track traitors. To the best of our knowledge, this is the first IP protection scheme in federated learning that is compatible with secure aggregation and tracking capabilities

    Federated Learning in Computer Vision

    Get PDF
    Federated Learning (FL) has recently emerged as a novel machine learning paradigm allowing to preserve privacy and to account for the distributed nature of the learning process in many real-world settings. Computer vision tasks deal with huge datasets often with critical privacy issues, therefore many federated learning approaches have been presented to exploit its distributed and privacy-preserving nature. Firstly, this paper introduces the different FL settings used in computer vision and the main challenges that need to be tackled. Then, it provides a comprehensive overview of the different strategies used for FL in vision applications and presents several different approaches for image classification, object detection, semantic segmentation and for focused settings in face recognition and medical imaging. For the various approaches the considered FL setting, the employed data and methodologies and the achieved results are thoroughly discussed

    SGDE: Secure Generative Data Exchange for Cross-Silo Federated Learning

    Get PDF
    Privacy regulation laws, such as GDPR, impose transparency and security as design pillars for data processing algorithms. In this context, federated learning is one of the most influential frameworks for privacy-preserving distributed machine learning, achieving astounding results in many natural language processing and computer vision tasks. Several federated learning frameworks employ differential privacy to prevent private data leakage to unauthorized parties and malicious attackers. Many studies, however, highlight the vulnerabilities of standard federated learning to poisoning and inference, thus raising concerns about potential risks for sensitive data. To address this issue, we present SGDE, a generative data exchange protocol that improves user security and machine learning performance in a cross-silo federation. The core of SGDE is to share data generators with strong differential privacy guarantees trained on private data instead of communicating explicit gradient information. These generators synthesize an arbitrarily large amount of data that retain the distinctive features of private samples but differ substantially. In this work, SGDE is tested in a cross-silo federated network on images and tabular datasets, exploiting beta-variational autoencoders as data generators. From the results, the inclusion of SGDE turns out to improve task accuracy and fairness, as well as resilience to the most influential attacks on federated learning

    A Comparative Evaluation of FedAvg and Per-FedAvg Algorithms for Dirichlet Distributed Heterogeneous Data

    Full text link
    In this paper, we investigate Federated Learning (FL), a paradigm of machine learning that allows for decentralized model training on devices without sharing raw data, there by preserving data privacy. In particular, we compare two strategies within this paradigm: Federated Averaging (FedAvg) and Personalized Federated Averaging (Per-FedAvg), focusing on their performance with Non-Identically and Independently Distributed (Non-IID) data. Our analysis shows that the level of data heterogeneity, modeled using a Dirichlet distribution, significantly affects the performance of both strategies, with Per-FedAvg showing superior robustness in conditions of high heterogeneity. Our results provide insights into the development of more effective and efficient machine learning strategies in a decentralized setting.Comment: 6 pages, 5 figures, conferenc

    Over-the-Air Federated Learning In Broadband Communication

    Full text link
    Federated learning (FL) is a privacy-preserving distributed machine learning paradigm that operates at the wireless edge. It enables clients to collaborate on model training while keeping their data private from adversaries and the central server. However, current FL approaches have limitations. Some rely on secure multiparty computation, which can be vulnerable to inference attacks. Others employ differential privacy, but this may lead to decreased test accuracy when dealing with a large number of parties contributing small amounts of data. To address these issues, this paper proposes a novel approach that integrates federated learning seamlessly into the inner workings of MIMO (Multiple-Input Multiple-Output) systems

    PrivacyFL: A simulator for privacy-preserving and secure federated learning

    Full text link
    Federated learning is a technique that enables distributed clients to collaboratively learn a shared machine learning model while keeping their training data localized. This reduces data privacy risks, however, privacy concerns still exist since it is possible to leak information about the training dataset from the trained model's weights or parameters. Setting up a federated learning environment, especially with security and privacy guarantees, is a time-consuming process with numerous configurations and parameters that can be manipulated. In order to help clients ensure that collaboration is feasible and to check that it improves their model accuracy, a real-world simulator for privacy-preserving and secure federated learning is required. In this paper, we introduce PrivacyFL, which is an extensible, easily configurable and scalable simulator for federated learning environments. Its key features include latency simulation, robustness to client departure, support for both centralized and decentralized learning, and configurable privacy and security mechanisms based on differential privacy and secure multiparty computation. In this paper, we motivate our research, describe the architecture of the simulator and associated protocols, and discuss its evaluation in numerous scenarios that highlight its wide range of functionality and its advantages. Our paper addresses a significant real-world problem: checking the feasibility of participating in a federated learning environment under a variety of circumstances. It also has a strong practical impact because organizations such as hospitals, banks, and research institutes, which have large amounts of sensitive data and would like to collaborate, would greatly benefit from having a system that enables them to do so in a privacy-preserving and secure manner

    Over-the-Air Federated Learning in Satellite systems

    Full text link
    Federated learning in satellites offers several advantages. Firstly, it ensures data privacy and security, as sensitive data remains on the satellites and is not transmitted to a central location. This is particularly important when dealing with sensitive or classified information. Secondly, federated learning allows satellites to collectively learn from a diverse set of data sources, benefiting from the distributed knowledge across the satellite network. Lastly, the use of federated learning reduces the communication bandwidth requirements between satellites and the central server, as only model updates are exchanged instead of raw data. By leveraging federated learning, satellites can collaborate and continuously improve their machine learning models while preserving data privacy and minimizing communication overhead. This enables the development of more intelligent and efficient satellite systems for various applications, such as Earth observation, weather forecasting, and space exploration.Comment: arXiv admin note: text overlap with arXiv:2211.0157
    • …
    corecore