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ABSTRACT Federated Learning (FL) has recently emerged as a novel machine learning paradigm allowing
to preserve privacy and to account for the distributed nature of the learning process in many real-world
settings. Computer vision tasks deal with huge datasets often with critical privacy issues, therefore many
federated learning approaches have been presented to exploit its distributed and privacy-preserving nature.
Firstly, this paper introduces the different FL settings used in computer vision and the main challenges
that need to be tackled. Then, it provides a comprehensive overview of the different strategies used for FL
in vision applications and presents several different approaches for image classification, object detection,
semantic segmentation and for focused settings in face recognition and medical imaging. For the various
approaches the considered FL setting, the employed data and methodologies and the achieved results are
thoroughly discussed.

INDEX TERMS Federated learning, computer vision, scene understanding, survey.

I. INTRODUCTION
Large-scale machine learning models deployed in real-world
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scenarios often require training data sharing on a centralized . . A - o
server, where the actual model optimization takes place. Fed- dient 1 [ | =
erated Learning (FL) was initially introduced in [155] as an ) :
alternative approach to train a global model across multiple E;i & o |
devices while preserving the privacy and decentralization of ! L3 >
their respective data. ik q

In particular, machine learning methods for computer
vision heavily rely on collecting and storing a huge amount a R
of annotated image data on a central server. Centralizing such dient: B u

data necessitates the transfer of a significant volume of infor-
mation, resulting in substantial communication overhead.
Moreover, centralized data storage poses risks to user privacy
and confidentiality, and recent regulations on data privacy
prohibit the uploading of sensitive local data to centralized
data centers [214].

Federated learning has emerged as a promising solution
to address these challenges, as it enables on-device train-
ing of visual models. In FL, data remains localized on

FIGURE 1. Standard federated learning setting for vision applications,
whereas devices are heterogeneous among each other in terms of
computational capacity, number of image samples and statistical
distribution of data.

individual devices, and the collaborative training process
involves exchanging model parameters instead of raw data.
This approach opens up practical applications and oppor-
tunities for privacy preservation and effective management
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of sensitive data, such as medical images or facial pic-
tures [103], [127], [258]. The fundamental framework,
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initially introduced by McMahan et al. [155] and depicted in
Fig. 1, has been extended in various directions and explored
in many works (refer to Section III for more details). Most
studies on federated learning focus on its theoretical and
communication aspects [2], [105], [128], [145]. Nevertheless,
Federated Learning has recently attracted a wide interest
when applied to computer vision tasks, ranging from image
classification [26], [88], [269] to semantic segmentation [24],
[62], [161], and object detection [96], [147], [200].

As already pointed out, real-world computer vision set-
tings typically deal with huge amounts of data and often
with critical privacy issues, and the distributed and privacy-
preserving nature of FL. makes it an extremely good candidate
to solve these problems. As an example FL sparkled a large
interest in human-centric tasks like face recognition [3], [157]
and medical imaging [18], [129], [192], [236], [238], where
privacy is a key requirement.

After discussing the challenges that arise in Section II,
we overview the basic FL theoretical frameworks in Section
III, while the different settings for FL in computer vision
will be detailed in Section IV. The main challenges can
be tackled using different techniques, e.g., knowledge dis-
tillation, representation and prototype learning and different
aggregation strategies. Section V introduces the main insights
and ideas that allow to efficiently tackle vision tasks in a fed-
erated learning environment. This section empowers readers
to focus on the methodologies that align with their interests
and encourages further exploration of specific works in the
subsequent sections. Many different approaches apply these
ideas to well-known computer vision problems like image
classification, object detection, semantic segmentation and
face recognition and it is widely used also in the medical
imaging field. The most relevant approaches are presented in
Section VI, while some benchmark comparisons can be found
in Section VII. In Section VIII, we provide an overview of
potential current and future trends in Federated Learning and
finally in Section IX we draw the conclusions.

Il. MAIN CHALLENGES IN FL

Compared to standard supervised learning, the Feder-
ated setting introduces new challenges: the clients usu-
ally have different hardware capabilities (system hetero-
geneity), a different amount of samples to process (data
imbalance), and their data statistics may be different (sza-
tistical heterogeneity). Furthermore, the system should be
efficient in terms of communication. Finally, any proper
FL algorithm must not break the privacy preservation of
clients’ data.

Summarizing, the main challenges are:

o Statistical heterogeneity: clients’ data is highly non-IID,
i.e., their statistics may not be indicative of the global
distribution as they reflect the specific clients’ usage.

o Model heterogeneity: clients can have different models.

o Communication cost: transmitting model weights from
clients to server determines a latency in training and
sharing a huge quantity of information could cause
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FIGURE 2. Pipeline of a generic FL system for computer vision tasks.

network overloading [74]. The communication bottle-
neck issue can also be enhanced by the devices’ limited
or intermittent connectivity due to battery consumption
constraints, faults, or data unavailability.

o Convergence time: reducing the time required to com-
plete the training is a key target.

e Privacy and Security: client-server communications
should not contain sensitive information and FL systems
should prevent the server from accessing clients’ local
data [21], [127].

o Catastrophic forgetting: inconsistent predictions can
arise between subsequent training rounds [117].

o Unlabeled data at clients: in some settings assuming that
clients have access to ground truth data is not realistic.

IIl. OVERVIEW OF FEDERATED LEARNING

The first approach for FL, that represent also the baseline
algorithm, is Federated Averaging (FedAvg) [155]. FedAvg
uses a client-server architecture to perform collaborative
learning in synchronous rounds. The server (or aggregator)
broadcasts the global model’s current parameters to some of
the clients at the start of each round.

Each participant locally trains the model on its own private
data and sends back the updated model parameters to the
server. The server collects these updates and combines them
using a specified strategy, i.e., a weighted average based
on the amount of local data each participant has. The com-
bined updates are applied to the global model as a “pseudo-
gradient” [180]. This process can be repeated for multiple
rounds of FL by distributing the updated global model to
participants. A summary of the pipeline is shown in Fig. 2.

Despite proving solid empirical results in IID and bal-
anced settings, FedAvg performances degrade when dropping
this assumption [269]. Subsequent research works took into
consideration that heterogeneous data characterize real-world
federated learning and simulate this scenario by the use of
realistic per-user data splits [88], [269]. To this extent, they
address two types of distribution shift: non-identical class
distribution, where the visual distribution of classes differs by
device, and imbalanced client data sizes, where the number of
samples available for training varies for each client.
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FedProx [128] can be viewed as a generalization and
re-parametrization of FedAvg. Theoretically, FedProx pro-
vides convergence guarantee when learning over data from
non-identical distributions (statistical heterogeneity), and
while adhering to device-level systems constraints by allow-
ing each participating device to perform a variable amount of
work (systems heterogeneity). Different devices in federated
networks often have different resource constraints in terms of
computing hardware, network connections, and battery lev-
els. Therefore, it is unrealistic to force each device to perform
a uniform amount of work (i.e., running the same number
of local epochs), as in FedAvg. FedProx allows for variable
amounts of work to be performed locally across devices based
on their available systems resources and then aggregates the
partial solutions sent from the stragglers (as compared to
discarding updates from these devices). Moreover, a proximal
term has been added to the local subproblem to effectively
limit the impact of local variable updates.

SCAFFOLD [105] aims for a faster convergence and for
a reduction of the so-called “‘client-drift” in local updates.
SCAFFOLD estimates the update direction both for the server
model and for each client and the difference between the
two is then an estimate of the client-drift which is used to
correct the local update. It can be seen as an improved version
of [190], introduced for distributed parallel optimization.

MIME [104], extends SCAFFOLD to all types of functions
and applies global momentum locally since it proved to be
more effective than using server-only-momentum strategies.
While MIME has demonstrated good performance, it can be
detrimental to training efficiency as it requires computing the
gradient twice at each local step [220].

AdaBest [212], proposes an adaptive algorithm that esti-
mates drift across clients, using less storage and communica-
tion bandwidth, as well as lower compute costs. Additionally,
it improves stability by constraining the norm of estimates for
client drifts, making it more practical for large-scale FL.

FedNova [219] provides a general framework to analyze
the convergence of heterogeneous federated optimization
algorithms. The authors focus on understanding the solution
bias and the convergence slowdown due to objective incon-
sistency. Moreover, FedNova presents a normalized averag-
ing method that aims to eliminate objective inconsistency
while preserving fast error convergence. They claim that
sophisticated approaches such as FedProx [128] and SCAF-
FOLD [105], designed to handle non-IID local datasets, can
be used to reduce (not eliminate) objective inconsistency to
some extent, but these methods either result in slower con-
vergence or require additional communication and memory
resources. In FedNova the locally normalized updates (that
are just re-scaled versions of cumulative local changes) are
averaged instead of the local changes.

The insights introduced by these works have then been
applied in many papers targeting federated learning for differ-
ent vision tasks, ranging from image classification to object
detection and semantic segmentation, and again to more
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human-centric tasks such as face recognition and medical
imaging. The various FL approaches for vision applications
are detailed in Section VI.

IV. FEDERATED LEARNING SETTINGS
This section overviews the main FL settings of interest in
computer vision.

o Standard FL: the standard setting of FL. with non-1ID
data scattered across different clients [269], with the
objective of training a single global model.

« Heterogeneous FL: clients can have different models,
different computation resources and different communi-
cation capabilities [48].

« Personalized FL: in standard FL client data are used to
train collaboratively a global model. In personalized FL
instead, each client aims at optimizing a specific model
to be deployed on its own data [76].

o Clustered FL: in this setting subsets of clients share
some common characteristics, i.e., their data belong to
the same subdomain, and they can be grouped with the
objective to build a personalized model for the cluster
that works well in the corresponding subdomain [25],
[60], [64], [69], [188], [193].

o Continual FL: Continual learning enables a model to
learn from a never-ending stream of data, without the
need to retrain the model from scratch every time new
data or new tasks become available. Class-incremental
continual learning, allowing clients to learn from non-
stationary data and learn new tasks over time has been
explored in the FL setting [50], [51], [90], [149], [247],
[252]. An asynchronous federated continual learning
(AFCL) setting has been introduced in [194], where
the learning of multiple tasks happens with different
orderings and in asynchronous time slots.

o Federated Domain Adaptation: Domain adaptation

(DA) deals with the statistical heterogeneity between a
source dataset, used for training, and a target dataset to
which the model should be adapted. It aims at trans-
ferring the learning performed on source data to the
target set. Interesting DA settings are UDA (Unsuper-
vised DA), where no supervision on the target dataset is
available and SFDA (source-free DA) where source data
is not available during adaptation.
Within the context of FL, DA has been approached from
diverse perspectives to target various applications, e.g.
face recognition [276]. Examples include its integration
with adversarial learning techniques [175], the consid-
eration of individual clients as distinct target domains,
denoted as multi-target DA [245], the use of each client
as a source domain with an additional target one [98],
and finally in the SFDA setting [193].

V. METHODS

The purpose of this section is to present diverse insights and
ideas by emphasizing their broad utility within the context of
Federated Learning. We aim to offer readers a comprehensive
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grasp of the prevailing ideas and concepts, laying the founda-
tion for the subsequent task-specific discussion in Section VI.
Since FL needs to solve a wide range of challenges in
many different settings, a large number of different strategies
have been proposed both for the local training procedures
on the clients and for the model aggregation at server side.
We present the main families of strategies and we briefly
discuss how the different provisions are implemented into
FL approaches. In Figure 3 an overview of the family of
strategies is presented, grouping them into client and server-
side techniques.

Pre-training is a transfer learning technique that has been
widely used to reduce training time and improve final accu-
racy in large-scale deep learning. Even though the standard
FL setup [155] does not consider an initial pre-training step
at server side, the nature of FL makes it the perfect candi-
date for such strategies. Starting from a pre-trained model
significantly reduces the impact of heterogeneity of data (data
is IID during pre-training while clients have non-IID data),
thus allowing to train clients with more local epochs (and
less rounds) since the client drift is more limited [170]. This
enables the learned global models under different clients’
data conditions to converge to the same loss basin and makes
global aggregation more stable.

The first systematic study on pre-training for FL is [34],
which uses five different image datasets. They consider two
cases, when the server has a pre-trained model or data for
pretraining from real-world dataset (e.g., Imagenet), and
when the server has no data, resorting to image generation
techniques such as random generative models or fractals
[71, [106]. Fractal pre-training is also used in [194].

Another approach is to force clients to jointly learn to
fuse the representations generated by multiple fixed pre-
trained models rather than training a large-scale model from
scratch [204]. Pre-training on a supervised source dataset at
the server side can also be used to tackle real-world setups,
where clients have unsupervised data and require adapta-
tion [193], [245].

Image Augmentation and Style Transfer techniques
have been used to improve domain generalization in FL [35],
[62], [142]. Data augmentation techniques can be used to
improve generalization thus mitigating issues due to data
heterogeneity on the clients, and in addition, allow to improve
accuracy on new unseen clients [46]. Furthermore, in clus-
tered FL clients can be clustered according to their style to
improve performances [193].

In a practical FL application, the models trained with
local datasets are likely to establish decision rules on biased
attributes (i.e., fur color for animals), which hinders the
aggregated model’s ability to learn a suitable representation
for classification. Hence, [239] propose to learn a Bias-
Eliminating Augmenter at each client, able to generate bias-
conflicting samples thus reducing the bias in local updates.

Knowledge Distillation (KD) was introduced in [84] for
model compression: it allows to transfer knowledge from a
larger network (teacher) to a smaller one (student). It has
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FIGURE 3. Overview of the main strategies employed at client and server
side for Federated Learning.

been widely used in continual learning and recently has
been increasingly employed in FL algorithms [162] to reduce
catastrophic forgetting, tackle data heterogeneity, and enable
model heterogeneity.

At client side, KD can be used to tackle catastrophic for-
getting, by forcing the prediction of the current local model
to be consistent with the global model of the previous step,
preserving inter-class semantic consistency across different
incremental tasks [50], and balancing knowledge from others
while boosting both inter and intra-domain performance [90].

KD methods can address data heterogeneity, both at client
and server sides. At the client side, global knowledge is used
to control the client drift via on-device regularizers [80],
[811, [117], [246] or using synthetically-generated data [275].
On the server side, instead, the global model can be rectified
via ensemble distillation of a proxy dataset [32], [138], [187]
or using a generator network [215], [262], [263].

Finally, KD can be used without resorting to a public
dataset or a generative model at the server, by applying it
on averaged data representation and soft predictions (referred
to as “‘hyperknowledge”) to improve both personalized and
global model performances [31].

Representation Learning techniques aim at improving a
downstream task by enforcing meaningful distribution of the
training data representations (features).

A first set of approaches aims at aligning features across
clients during local training to address data heterogeneity on
clients [271] and domain generalization [261]. Contrastive
Learning is used in [204] to assist local training and achieve
higher model performances [124], [166], [259].

The permutation invariance property of neural net-
works leads to neuron misalignment across local models,
therefore [133] binds neurons in positions and pre-aligns
parameters for better coordinate-wise parameter averaging,
while [218] matches the neurons of client models before
averaging them, and permits global model size adaptation.

A different approach is proposed in [52], where the non-
IID issue is tackled by constraining learned representa-
tions of data points to be on a unit hypersphere shared by
clients.
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A feature-oriented model structure adaptation method
is exploited in [254] to ensure explicit feature allocation.
Applying the structure adaptation to collaborative models,
matchable structures with similar feature information can
be initialized at the very early training stage. Then, during
the federated learning process, a feature-paired averaging
scheme is used to guarantee aligned feature distributions and
avoid feature fusion conflicts under either IID or non-IID
scenarios.

Prototype Learning techniques aim to learn a compact
representation of features, called prototypes, which can be
used as representatives of target classes. Hence the large
adoption of these methods for continual learning. In FL,
a first possible strategy is the correction of the client drift
by computing client deviations using margins of prototypical
representations learned on distributed data. These margins
can be exploited to drive the federated optimization, via an
attention mechanism [161], to address system and statistical
heterogeneity. Prototypes can also be transmitted instead of
model weights [203], to reduce communication cost, to allow
clients to learn a more customized local model and to be more
robust to gradient-based attacks [28], [273] since high-level
statistic information (prototypes) are more privacy-compliant
than raw features. Prototype-based contrastive losses can
be used to make local objectives consistent with the global
optima and tackle the non-IID data issue [166]. Finally,
since global prototypes could be biased towards the dominant
domain distribution in the presence of numerous domains
(domain shift), a combination of cluster prototypes and aver-
aged prototypes can be employed [91].

Batch Normalization (BN) is a key tool in deep learning.
However, standard batch normalization in FL is not very
effective (according to [54] this is due to the fact that statis-
tics of channels change significantly across clients). Various
customized versions of BN layers have been proposed for
federated learning empirically showing better performance.

Firstly, it is possible to update the client batch-norm
layers locally without communicating them to the server,
in order to achieve personalized FL [132]. Local-statistic
batch normalization (BN) layers can be exploited, resulting in
collaboratively-trained, yet center-specific models [8]. This
strategy improves robustness to data heterogeneity while also
reducing the potential for information leaks by not sharing the
center-specific layer activation statistics. Group normaliza-
tion (GroupNorm) can improve the convergence of FL [86].
Nevertheless, GroupNorm is an instance-based normaliza-
tion scheme, which is highly sensitive to the noise on data
samples. The privacy concern can be tackled by not tracking
running estimates and simply normalizing batch data [48].

Model Aggregation: variations of the standard FedAvg
[155] aggregation have been introduced for a variety of rea-
sons. With FairAvg [160] each user contributes equally to
the aggregated model (simple mean), increasing accuracy
and convergence rate. Layered-wise aggregation schemes are
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used to enable personalized [153] and clustered FL [193].
A selective model aggregation scheme has been used to
reduce the influence of varying image quality and com-
putation capabilities in vehicular clients [248]. The work
in [29] presents elastic aggregation as a novel approach in
federated learning for addressing gradient dissimilarity in
heterogeneous scenarios. By leveraging parameter sensitivity,
this technique improves convergence behavior and enhances
the effectiveness of federated learning. In [264], to enable
domain generalization to unseen domains, the global model
dynamically calibrates the aggregation weights minimiz-
ing the variance of the generalization gap. In [248] FL is
applied to Vehicular Edge Computing, and a selective model
aggregation approach is proposed to reduce the influence of
the diversity of image quality and computation capability
of the different vehicular clients. Finally, FedFusion [55]
introduces a variational autoencoder method for learning
the optimal parameters of distribution fusion components
based on observed information. These parameters are then
utilized to optimize the federated model aggregation in the
presence of non-IID data. Notice that, despite the server not
having direct access to private data, there are statistical char-
acteristics embedded within the received model parameters
(normalization layers) from which the server can infer the
local distributions.

Privacy and Security are implemented in FL by enabling
local training without the need for the exchange of critical
data between the server and the clients. This safeguards
the clients’ data from potential eavesdropping by hidden
adversaries. However, it is important to note that adver-
saries may still be able to collect private information by
analyzing the differences in trained network weights or other
parameters transmitted by the clients [150], [196], [226].
To mitigate the risk of information leakage, a first solution
is to perturb in some way the transmitted data to make
harder the eavesdropping task without affecting too much
the model performances. Techniques for this task include
differential privacy (DP) [56], additive perturbation and mul-
tiplicative perturbation [251]. As an example, the authors
of [227] propose a framework based on differential pri-
vacy in which each client adds noise to its locally trained
parameters before uploading them to the server for aggre-
gation. An alternative is to use cryptographic techniques
such as homomorphic encryption [183], secret sharing, and
secure multi-party computation. For example in [151], the
model updates undergo encryption using an aggregated pub-
lic key before being shared with the server for aggregation.
To decrypt the updates, collaboration among all participating
devices is necessary. This approach demonstrates resilience
against potential attacks from the participants and collusion
attempts between the participating devices and the server.
Many other approaches for this task have been proposed, for
comprehensive surveys focusing on privacy and security in
FL see [165] and [251].
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OD: Object Detection

SS: Semantic Segmentation
FR: Face Recognition

MI: Medical Imaging

IC: Image Classification

# papers

FIGURE 4. A timeline that illustrates increasing research focus on these
vision tasks each year. The plot shows the number of papers in each year
for each of the 5 tasks in Section VI. Notice that we assigned papers
tackling face recognition and medical imaging to these tasks
independently of the underlying computer vision task.

VI. FL IN COMPUTER VISION: TASKS AND APPROACHES
FL has shown great potential in computer vision applications,
particularly when dealing with large and sensitive datasets,
and it has been applied to a variety of computer vision tasks.
However, each of these tasks poses unique challenges when
it comes to federated learning. For instance, semantic seg-
mentation requires pixel-level annotations, which are usually
scarce and expensive to obtain. Additionally, the distribution
of the data across different clients may be heterogeneous,
which can lead to performance degradation if not addressed
appropriately. Despite these challenges, recent works have
demonstrated promising results in applying federated learn-
ing to computer vision tasks [24], [62], [161], [193], and
ongoing research aims at improving the performance and
scalability of FL in this domain. An overview of the distri-
bution of the papers on the different tasks is shown in Fig. 4.

Throughout this section, we address the different tasks
(i.e., the three main image understanding tasks - Classifi-
cation, Object Detection and Semantic Segmentation - plus
two widely considered application fields, Face Recognition
and Medical Imaging) and present the main approaches
developed to tackle each of them. This structure allows to
focus on specific application domains and facilitates an in-
depth exploration of the strategies presented across different
research papers. We decided to subdivide the works on the
basis of the considered task since, although many FL tech-
niques can be applied in principle to different tasks, the
majority of current research works focus on a single vision
task. In the remainder of this section, we present the various
approaches, while some performance comparisons will be
shown in Section VII.

A. IMAGE CLASSIFICATION

Image classification, i.e., classifying an entire image into one
of the possible semantic classes, is a fundamental task in
computer vision. Several backbone models have been used
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for federated image classification tasks, from the widely used
ResNet [79] model to lightweight architectures. As an exam-
ple, MobileNet [186] runs efficiently on mobile devices with
limited computational power, thus being well suited for real-
world FL settings. Simple datasets have been widely used
such as the 10 classes color images CIFAR-10 [112] dataset,
its extended version with 100 classes (CIFAR-100) or the
grayscale images of handwritten numbers from MNIST [116]
or EMNIST [42]. The data inside these datasets need to
be split in order to simulate the non-1ID distribution across
clients, which is a key characteristic of FL data. To this aim,
FL researchers have proposed new data splits to simulate real-
world scenarios. As an example, Zhao et al. [269] suggest
two partitions of MNIST and CIFAR-10: in the first case
each client receives data belonging only to a class, while in
the other each client is randomly assigned 2 partitions from
2 classes.

1) TACKLING STATISTICAL HETEROGENEITY

As for most tasks, the impact of non-IID data at the clients
is one of the key issues to be tackled by approaches target-
ing image classification in the federated setting. The work
of [269] shows that the accuracy is reduced significantly
when data is non-IID, which can be explained by the model
weights divergence at each device. As a solution, they pro-
pose sharing a small subset of image data across all devices.
A simple modification of FedAVG, called FedAvgM [87]
addresses the non-IID issue by introducing momentum at
the server side. The work of [182] introduces a FL frame-
work robust to affine distribution shifts. They propose a fast
and efficient optimization method and provide convergence
and performance guarantees via a gradient Descent Ascent
(GDA) method. In [124] the authors address the non-IID issue
observing that the global model trained on a whole dataset
is able to learn a better representation than the local model
trained on a skewed subset. They propose model-contrastive
learning, to force the representation learned by the local and
global models to be aligned. A probabilistic FL. framework
is considered in [257], where the global model is built with a
Bayesian non-parametric strategy that allows the local param-
eters to match existing global ones, otherwise new global
parameters are created if existing ones are poor matches.
FedAlign [156] studies the data heterogeneity challenge of
FL focusing on local learning generality. They resort to a
distillation-based regularization method to align the Lipschitz
constants, promoting smooth optimization and consistency
within the model. A general multi-stage FL framework (Fed-
Corr) is proposed in [237] to tackle data heterogeneity, with
respect to both local label quality and local data statistics.
More specifically, an adaptive local proximal regularization
term based on estimated local noise levels is introduced. The
work of [133] focuses on solving the non-IID challenge in FL
limiting the misalignment across local models. FedPVR [120]
starts from the observation that there is a stronger misalign-
ment between models in the last few layers of the network
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TABLE 1. Comparison of Federated Learning approaches for image

classification. The considered datasets are: MNIST [116], EMNIST [42],
FEMNIST/CelebA [26], FashionMnist [230], BelgiumTSC [209], Natural

Disaster/Waste [4], CIFAR-10/100 [112], TinylmageNet [115], ISIC
2018/HAM1000 [210], Mixed Digits [132], SVHN [167], GTSRB [199],

CINIC-10 [45], PACS [121], Office-Home [213], Camelyon17 [15], iNaturalist
[211], Clothing1M [232], Commercial Image Sources [95], DomainNet
[174], Terralnc [17], Colored MNIST [10], Corrupted CIFAR-10 [83], Collage

CIFAR-10 [207], Office-Caltech [70], SST-2 [198], AGNews [266],
SUN397 [231], MedMNIST [243].

Paper  Model Dataset # Clients # Rounds
2-layer NN, 2-layer CNN MNIST, CIFAR-10 100 1000,
pss) 7 g : 3000
lag o rezression MNIST, FEMNIST, FMNIST 200, 1000 100, 200
{los)  2laver NN.log. regression EMNIST 100 70
liag  LeNet MNIST, TinylmageNet 8 100
g7 MlaerCNN CIFAR-10 100 10k
llog) 1o rezression, 2-layer CNN EMNIST 3400 1000
o) VGG CIFAR-10 16 200
2-lay . .
[0 2laver NN CNN MNIST, CIFAR-10 10 500
2 T, CIFAR- .
s V2layerNN MNIST, CIFAR-10
oy O FEMNIST-62 3400 500
o4y MlayerCNN MNIST, BelgiumTSC -
1y LeNet. VGG9 MNIST, CIFAR-10 16 16
js7 ResNet18 CIFAR-10 100 1000
4] ResNet-101 Natural Disaster, Waste
AlexNet, Inceptionet, - y
[182] miniReaNet MNIST, CIFAR-10 10 100
100, 300,
(260 MlaverCNN MNIST 4 1000
2-layer CNN CelebA, FEMNIST 9343 100, 1000
125) layer C elebA, FE 1550 .
7y ResNets CIFAR-10/100
[124)  ResNet:50. 2Jayer NN, NN CIFAR-10/100, TinylmageNet 50,100 100, 20
{261 2laver NN 2-layer CNN MNIST, CIFAR-10 100
{254 VGGY. VGGI6, MobileNet CIFAR-10/100 10-100 200
lleg)  ResNet:50.CNN CIFAR-10/100, TInyImageNet 50,100 100
{177 AlexNet, VGGG, Incepiion Skin Cancer MNIST: HAM1000 4 10,20, 30
EMNIST, FMNIST,
71 ONNoResNet-18 CIFAR-100, Mixed Digits 10 200
{203 2laver CNN. ResNet 18 MNIST, FEMNIST, CIFAR-10 20 100
lleo)  laver ONN MNIST, FEMNIST 1000, 200 200, 400
[lot)  2laver NN, d-layer CNN MNIST, FEMNIST, CelebA 200, 400
MNIST, FEMNIST, SVHN,
{133 ¥layerNN.VGGIL ResNet-20  GTSRB. CIFAR-10/100. 355 2000
Cinicl0
2-layer NN, 2-layer CNN EMNIST, CIFAR-10/100 100, 1000 1200,
[212] yer B . - 2000
ResNet, DenseNet121 PACS, Office-FHome, domains 100,500
135] Camelyon17 < clients
{206 Flaver NN, 3-layer CNN FMNIST, CIFAR-10 100 500, 2000
{24 LeNetResNet-18 CIFAR-10/100 100 5000
CIFAR-10/100, EMNIST,
sy OW FMNIST 10,100 600, 2500
[i3s]  2laver ONN. ResNet 18 SVHN, CIFAR-100, ISIC2018 10 1000
| y CIFAR-10/100, FMNIST, 20, 100,
(33 CNN.VGGIL ResNet-8120 EMINIST s 100
CIFAR-10, TinylmageNet, 10, 100,
2032 g
(3 ResNet(1820324456) Notaratist 6 100
l1ss)  ResNet:s6 CIFAR-100 16 25
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TABLE 1. (Continued.) Comparison of Federated Learning approaches for
image classification. The considered datasets are: MNIST [116], EMNIST
[42], FEMNIST/CelebA [26], FashionMnist [230], BelgiumTSC [209], Natural
Disaster/Waste [4], CIFAR-10/100 [112], TinylmageNet [115], ISIC
2018/HAM1000 [210], Mixed Digits [132], SVHN [167], GTSRB [199],
CINIC-10 [45], PACS [121], Office-Home [213], Camelyon17 [15], iNaturalist
[211], Clothing1M [232], Commercial Image Sources [95], DomainNet
[174], Terralnc [17], Colored MNIST [10], Corrupted CIFAR-10 [83], Collage

CIFAR-10 [207], Office-Caltech [70], SST-2 [198], AGNews [266],

SUN397 [231], MedMNIST [243].

Paper  Model Dataset # Clients # Rounds
s Net, ResNet-18 CIFAR-10, FEMNIST 100, 3150 1000,
(7o) SaueezeNet ResNet- 410, \ 1082
2-layer CNN MNIST, EMNIST, CIFAR-10 20,4060 1000
[201] ’ ’ 40 2000
ResNet-10/12, ShuffleNet,
[611 MobileNetV2 CIFAR-10/7100 4 40
. 50, 100, 955,910,
pa7  ResNet-18034/50 CIFAR-10/100, Clothing IM 0 102
EMNIST, FMNIST, 100, 500, 35,86, 43,
677 CNNResNet-18 CIFAR-10/100, TinyImageNet 20 53,39
AlexNet, InceptionNet,
182 min-ReNet MNIST, CIFAR-10 10 100
. 10, 50,
jog)  ResNet1 CIFAR-10/100 100 200
jos)  VOG-I9 Commercial Image Sources 8 50,150
) 50, 100,
l1og  ResNet18 CIFAR-100 S0 5000
lig  ResNet18 CIFAR-10/100, FEMNIST 100 4000
20, 200,
. MNIST, FEMNIST, 500, 1000, .
129] 2-layer CNN, ResNet-20, CIFAR-10/100, CINIC-10 34000 1000,
4000
PACS, Office-Home,
{264 ResNet-18/50. AlexNet DomainNet. Teralne 46 40
|35 Flaver NN MNIST, CIFAR-10, CIFAR-100 10 20
. Colored MNIST, Corrupted
[239)  LeNet ResNet-18 CIFAR-10, Collage CIFAR-10 10 100
. MNIST, CIFAR-10/100, 500, 1000,
[14g)  LeNelS. VGG-I1 ResNet-20 Tinylmagenet 100 2000
N SVHN, CIFAR-10/100, 100, 200,
[123)  ResNet-18, ViT-Tiny EMNIST, ISIC 2018 10 400
li7g)  2laver CNN. ResNet-18 CIFAR-10/100 30,50 200
Office Caltech, MNIST, USPS,
) ResNet10 SVIN, SYN 10,20 100
. MNIST, EMNIST, FMNIST,
15 ResNetll SVEN 20 60
l12o)  ResNet:8.VGG-11 CIFAR-10/100 10 80
137 VGG, LeNet:s CIFAR-10, FMNIST, SVHN 20,100 2000
e . CIFAR-10/100, ImageNet,
{0z  EficientNet-B4, ResNet-101 SST-2, AGNews 50, 100 90, 400
100, 200,
ResNet-18 EMNIST, CIFAR-10/100 300, 500, 200
[195]
700
2-layer NN, LeNet, 6-layer FMNIST, CIFAR-10/100, 50, 100, 100
[272] NN SUN397 200
Loy laver NN CIFAR-10, SVHN, MedMNIST 10 100
ResNet18 LeNet, 20. 50,
{ss)  DenseNet-121, MobileNetv2, MNIST, FMNIST, CIFAR-10 0o 100
a BILSTM
ResNet-18, WideResNet28-10, )
179]  ReaNets0 CIFAR-10/100, TinylmageNet 20,100 1000

compared to the rest of it. To address this issue, the authors
proposed a partial variance reduction that focuses on aligning
the local models specifically in the last layers (differently

from SCAFFOLD which performs it on all layers).

2) TACKLING MODEL HETEROGENEITY
In real-world scenarios, clients exhibit variations in their
computational capabilities, leading to discrepancies in the
complexity of their models. Therefore, several studies have
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been conducted to enable FL in the context of such heteroge-
neous models. Lin et al [138] propose an ensemble distillation
for model fusion (FedDF). The server collects the class scores
of the public dataset on each client model and calculates the
average value as the updated consensus.

A scenario with noisy and heterogeneous clients is con-
sidered in [61]. As in the previous work, public data is used
to deal with model heterogeneity, and a correction loss com-
putes the optimal weighted combination of the selected client
outputs, reducing the contribution of the noisy ones.

Diao et al. [48] present HeteroFL, a method to dynami-
cally allocate a subset of global model parameters as local
model parameters, considering the capabilities of the local
clients. Ilhan et al. [92] introduce ScaleFL, a framework that
adjusts the size of a deep neural network based on available
resources. It achieves this by allowing the model to make pre-
dictions at different stages with early exit points. This enables
the selection of the best-fit models for efficient training on
distributed client devices. It also incorporates self-distillation,
which involves leveraging predictions from different early
exits to improve knowledge transfer among subnetworks.

3) PERSONALIZED FL

Some works instead of aiming at the construction of a unique
global model, focus on the construction of personalized mod-
els optimized for the data of a specific client or set of clients.
The work of [101] draws a connection between two widely
used FL. models and model agnostic meta-learning algorithms
(MAML), and interpret existing FL algorithm in the light
of existing MAML algorithms. They show empirically that
FedAvg is already a meta-learning algorithm, optimizing for
personalized performance, as opposed to the quality of the
global model. A model trained using a standard central-
ized optimization method is harder to personalize, compared
to one trained using Federated Averaging, supporting the
first claim. However, concentrating solely on personalization
might lead to a biased personalized FL (pFL) result, where
clients with lower performances suffer from the large client
deviation. For this reason, in [179] pFL is addressed by
dividing the layers into personalized and universal, where
the personalized layers extract personalized attributes and
the universal layer universal information. Unlike most of the
previous work, in [33] the performance is improved simulta-
neously for pFL and standard FL, showing that strong person-
alized models emerge from the local training of generic FL
algorithms due to implicit regularization. Furthermore, when
clients have non-IID distributions, class-balanced objectives
can further improve FL performances. In [218] a layer-wise
federated learning algorithm is designed to account for per-
mutation invariance of the neurons and permits global model
size adaptation. Ma et al. [153] propose a layer-wise aggre-
gation policy to enable pFL among heterogeneous clients.
Gao et al. [67] introduce lightweight modifications in the
training phase to decouple the global model from clients’
local models using the local drift, improving the robust-
ness and speed of model convergence. Liang et al. [135]
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present a novel federated semi-supervised method, to address
the uneven reliability of non-IID local clients. Instead of
aggregating directly local clients, they propose the concept
of updating the global model via aggregating multiple sub-
consensus models. Inside a sub-consensus model, they pro-
pose a novel distance-reweighted model aggregation (DMA)
module, which dynamically adjusts the weights of each sam-
pled local client to the sub-consensus model.

In [272], the authors present a hierarchical Bayesian mod-
eling and variational inference algorithm that offers a closed-
form estimation of a confidence value. This confidence value
takes into account the uncertainty of clients’ parameters and
the local model deviations from the global model. During
the aggregation stage, the confidence value is used to weigh
clients’ parameters and adjust the regularization effect of
the global model. Similarly, [178] estimate the uncertainty
according to the performance of each client and perform
aggregation by selecting highly reliable clients.

4) REPRESENTATION'S ALIGNMENT

A widely used strategy to align the learned representations
across the different clients is to introduce additional losses
and constraints that work on the internal feature represen-
tations trying to regularize them across multiple clients.
In [261], an adversary module is proposed to reduce the
divergence in feature representation among different clients
and two consensus losses are proposed to reduce the incon-
sistency in optimization objectives from two perspectives.
In the pursuit of a structure-feature alignment across the
collaborative model, [254] designs a feature-oriented model
structure adaptation method to ensure explicit feature alloca-
tion in different neural network structures. Then, they propose
a feature-paired averaging scheme to guarantee aligned fea-
ture distribution and maintain no feature fusion conflicts.
Zhou et al. [271] demonstrate how data heterogeneity leads
to a vicious cycle between classifier divergence and feature
inconsistency across client models. To break it, they leverage
feature anchors to align features and classifiers across clients.
All client models are updated in a uniform feature space with
corresponding classifiers.

5) OPTIMIZING COMMUNICATION COST

Another set of works focuses instead on the communication
aspects of FL and aims at reducing the network communica-
tion resources usage and at the same time enforcing privacy
by avoiding transmitting sensitive data. A new FL framework
exploiting knowledge distillation that can preserve privacy
by design, while also consuming substantially less network
communication resources w.r.t. baseline methods is proposed
in [71]. An extensive empirical study is performed in [170] by
comparing 12 variations of federated optimization methods
on three commonly-used FL. benchmark dataset, with the
objective of understanding how the initialization impact the
behavior of federated optimization methods. They found that
a pre-trained solution can close the gap between training
on IID and non-IID data and that initializing FL with a
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pre-trained model can increase final model accuracy and
reduce the number of rounds required to achieve a target
accuracy. Tan et al. [203] present a novel FL method that
improves communication efficiency in the heterogeneous
setting by transmitting prototype representations instead of
model weights, further improving privacy. They propose also
a novel prototype-based aggregation. Isik et al. [94] propose
a FL framework where instead of model weights, clients
train a stochastic binary mask used to sparsify the dense
network with random weights, yielding a communication
efficient solution, faster convergence and higher accuracy.
Similarly, in [137] sparsity-aware training on clients is used to
reduce both communication and computational costs. Zhang
and Hanzo [260] propose a FL-aided multi-UAV system for
classification optimizing the communication cost.

An image classification dataset designed for FL is pre-
sented in [95], which is close to a real-world scenario where
each client has a unique dataset under domain shift. They
propose two algorithms dealing with two topologies (cycle
and star) which result to be more communication efficient.
Instead of sending model weights to the server for aggrega-
tion, [235] propose generating synthetic data on each client
to mimic the loss landscape of the original data through
distribution matching. This approach decreases the number
of communication rounds and enhances model quality by
transmitting more informative and smaller data.

6) FASTER CONVERGENCE

Another key aspect is the time required for the convergence
of the model. Hsu et al. [88] propose a framework to speed
up convergence for imbalanced clients. The idea is to con-
ceptually split large clients into multiple smaller ones, and
repeat these small clients multiple times such that all virtual
clients are of similar sizes. In addition, to avoid underutilizing
training examples from large clients, the probability that any
client is selected for a round is proportional to its data size.
Tang et al. [206] formulate the goal of accelerating the con-
vergence of FL as optimization problems that maximize the
posterior expectation of loss decrease. They utilize Gaussian
Processes to solve the optimization problem and obtain an
effective client selection strategy for heterogeneous FL. Sun
etal. [201] design a synchronization scheduler that can reduce
the wasted waiting time of the server and improves the time
efficiency in realistic settings. Moreover, they mitigate the
accuracy drop by applying the semi-asynchronous protocol
and enable extremely lagging devices to contribute to the
global model training.

7) ENSURING PRIVACY AND SECURITY

Local adaptation techniques (fine-tuning, freeze base, multi-
task learning, knowledge distillation) that an individual
participant can use to mitigate the damage from pri-
vacy and robustness mechanisms are investigated in [256].
An hybridization of meta-heuristic methods with FL is pro-
posed in [177], and analyzed in terms of the accuracy of
the general model as well as for security against poisoning
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attacks. Shi et al. [195] observe that the loss landscapes are
sharper in the presence of differential privacy. Therefore, they
propose to use Sharpness Aware Minimization in FL like
in [24], in combination with differential privacy to generate
local flat models with better stability and weight perturbation
robustness. Other works focusing on attacks and security
are presented in [122], [125], [126], [134], [202], [216],
and [268].

8) CATASTROPHIC FORGETTING

The phenomenon of catastrophic forgetting (CF), typical of
continual learning, is manifested also in federated learning
from the presence of diverse data and incomplete participa-
tion, ultimately undermining its performance [148]. In partic-
ular, [118] formalizes the concept of “local client forgetting”’,
showing that when a client performs local updates, it risks to
overly optimize his local objective and to forget knowledge
about the other subsets of data. They address this problem at
client side, by re-weighting the softmax logits before com-
puting the loss.

Another approach GradMA [148], addresses CF both at the
client and server side, by correcting the update directions of
the server and clients simultaneously. They resort to quadratic
programming and memorize updates to correct the update
directions. They propose also a memory reduction strategy
for a practical FL scenario with a large number of clients.

9) NON-STANDARD SETTINGS

Other works focus on non-standard settings where data
is unlabeled or made available in an incremental way.
Huang et al. [90] make use of unlabeled public data and
adopt self-supervised learning, to enable heterogeneous mod-
els communication and learn a generalizable representation.
To alleviate catastrophic forgetting in FL, inter and intra-
domain knowledge distillation is used.

Lietal. [123] focus on federated semi-supervised learning,
assuming that only a subset of clients is fully supervised.
They propose a pseudo-labeling strategy to handle the catas-
trophic forgetting problem and a class-balanced adaptive
threshold selection to refine them.

Among the various approaches considering unlabeled data,
the federated active learning framework has emerged as a
promising solution. In [4], a simple active learning-based FL.
framework is presented to utilize unlabeled samples at clients
for training local models in two real-world applications: natu-
ral disaster and waste classification. Whilst, [108] introduced
a novel query sample strategy that utilizes local-only and
global models to ensure both sides of inter-class diversity.

In [50] the authors address the problem of federated class
incremental learning, i.e., a global class-incremental model
is trained in the FL setting. They identify the catastrophic
forgetting in this scenario to be distinguished in local and
global. A class-aware gradient compensation loss and a class-
semantic relation distillation loss are used to address local
forgetting, while a class-semantic relation distillation on the
local clients is used to compensate for global forgetting.
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TABLE 2. Comparison of object detection papers. The considered
datasets are: Street-5/20 [147], KITTI [68], SODA10M [75], NuScenes [23],
BDD100K [253], Pascal VOC2007 [58], INRIA Person [44].

TABLE 3. Comparison of semantic segmentation papers. The considered
datasets are: Pascal-V0C2012 [59], Citysacpes [43], IDDA [5], CrossCity
[39], Mapillary [168], ADE20k [270], CamVID [22].

Paper  Model Dataset # Clients # Rounds

o R ’ § ~ 130, 189],
[147] YOLOV3, Faster R-CNN Street-5, Street-20 5,20 ~[83, 448]
[143] YOLOvV3 Private
196] YOLOv3 KITTI 4 15

. BDDI100K, SODA10M,
12001 RetinaNet NuScenes 4 3
s 2
Faster R-CNN Pascal VOC2007, INRIA 100 200

[40] Person

Moreover, a prototype gradient-based mechanism is imple-
mented to protect communication.

B. OBJECT DETECTION

Object detection consists in localizing - typically with a
bounding box - and labeling every single object of inter-
est into an image. Luo et al. [147] introduce a real-world
dataset collected from street cameras that reflects the char-
acteristics of the federated settings, namely that it is non-1ID
and imbalanced. They propose two configurations: in the
first, each camera is a client (Street-20); in the latter, cam-
eras are clustered in nearby areas (Street-5). Finally, they
test their benchmark using a modified version of FedAvg.
Liu et al. [143] developed a platform (FedVision) that enables
end-to-end collaborative training using personalized and
locally stored datasets from different clients. They implement
FedYOLOv3, which fits the YOLOvV3 [181] object detection
model into the FedAvg framework. The local parameters are
sent in a compressed and encrypted manner to the server.
A similar strategy is implemented in [96], considering an
autonomous driving FL scenario, where they tested their
framework on four clients using the KITTI dataset [68].
In FedOD [200], a multi-teacher distillation and a weighted
bounding boxes fusion scheme are exploited to provide each
client with both global and personalized models. In the
FedOD setup, two pairs of clients take data respectively from
SODA10M [75] and NuScenes [23] datasets, while the server
data comes from BDD100K [253], which is the largest one
in order to mimic statistical heterogeneity. Chow et al. [40]
present a systematic framework for protecting FL from
attacks. The authors propose a spatio-temporal signature
analysis to mitigate network failures resulting from errors
inherent in spatial clustering of gradients.

C. SEMANTIC SEGMENTATION

Semantic Segmentation involves assigning a label to every
single pixel in an image. State-of-the-art models utilize
encoder-decoder architectures based on CNNs or transform-
ers [37], [130], [144], [233]. These models have typically
a huge number of parameters but lightweight architectures
with smaller model sizes and lower computational complex-
ity [77], [85], [186] have also been proposed. As for the other
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Paper  Model Dataset # Clients # Rounds

DeepLabV3+-

[161] Mobilenetv2 Pascal VOC2012 100 400

146,144],

BiSeNet V2 90,60]

Cityscapes, IDDA 1600

[62]

BiSeNet V2 Cityscapes, IDDA

[
[
%146,144], 1600

[24] 90,69]

DeepLabV3-

[245]  MobilenetV2 CrossCity 4
DeepLabV3- Cityscapes, CrossCity,
[193] MobilenetV2 Mapillary 144,476,357 300, 1000, 100

DeepLabV3-

[34] MobileNetV2 Cityscapes 18 100

Pascal-VOC 2012,

DeepLabV3-ResNet-101 ADE20k

51] 10
Cityscapes, CamVID,
Pascal-VOC2012,
ADE20k

BiSeNetv2 19, 11, 20, 150

[159]

tasks distributed training solutions must be considered due to
privacy and efficiency constraints. FedMargin [161] provides
a distributed framework for both image classification and
semantic segmentation. It estimates client deviations from
the margin of class-conditional representations, and uses this
information to drive the federated optimization by means of
an attention mechanism. FedDrive [62] explores the appli-
cation of federated learning to the problem of autonomous
driving using data from multiple vehicles.

Federated Multi-target Domain Adaptation (FMTDA)
[245] addresses the challenge of dealing with a limited num-
ber of clients having unlabeled target local datasets with
dissimilar distributions. The approach leverages a labeled
source dataset that is accessible on the server side, while
simultaneously handling the aforementioned challenge in
a federated setting. The authors pigeonhole their setting
Multi-Target to highlight how the distributions of the target
datasets of the clients are affected by statistical heterogeneity.
Experimental evaluation is performed on four clients, where
each client has all the images belonging to one among the
four cities of CrossCity [39] or to one of the four domains
of BDDI100K [253]. Similarly, the Federated source-Free
Domain Adaptation (FFREEDA), introduced in [193], con-
siders a more realistic scenario with a large number of
unsupervised clients, while the server has access to a source
labeled dataset only for pre-training. Instead, the task of
federated incremental learning for semantic segmentation is
considered in [51]. Differently from previous works which
focused on domain heterogeneity, [159] addresses the chal-
lenging class heterogeneity problem for semantic segmenta-
tion. They propose a modified cross entropy loss and a pixel
contrastive loss to mitigate inconsistencies and client drift
during local adaptation.

D. FACE RECOGNITION

Face recognition (FR) is a biometric task that compares and
analyzes patterns to uniquely identify the face of a per-
son. A worldwide discussion on Al ethics has been sparked
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by commercial applications based on face recognition and
facial analysis techniques, leading to the release of gover-
nance guidelines and recommendations from various coun-
tries (e.g., EU’s General Data Protection Regulation [214]).
Therefore, in most cases, personal devices are not authorized
to access large amounts of facial data, and data sharing is
not permitted. Even providing only internal network repre-
sentations, as in other vision problems addressing FL, might
result in privacy leakage since high-fidelity face pictures can
be generated using ad-hoc ML techniques like Deeplnver-
sion [250]. The dataset themselves are subject to privacy
violations: as an example, MS-Celeb-1M [73], a large-scale
dataset containing 100K individuals, was taken off the Inter-
net due to privacy concerns. Examples of publicly available
datasets for this task are Labeled faces in the wild (LFW) [89],
IARPA Janus Benchmark-A (IJB-A) [109], IIB-B [229],
IJB-C [154] and Facial Faces in the Wild (RFW) [224]. As in
other vision tasks, most of the approaches rely on pre-trained
networks such as CosFace [217] and MobileFaceNet [38],
which constitute efficient backbones for FR. Summarizing,
face recognition requires model training and distribution
techniques able to ensure privacy protection in light of the
rising social agreement on data privacy and FL is a very
valuable tool to achieve this goal.

The first work to introduce federated learning into a FR
task has been FedFace [14]. The framework consists of
a server, 3 trainers, and 2 validators. The server maintains
a global momentum, which is evenly applied to each step
of a training round. In addition, the aggregated models are
validated on several parties, each of which has a private
validation dataset, in order to dynamically discover the nearly
optimal weightings for aggregation. FedFace [3] addresses
the scenario in which each of the participating clients has
photos belonging to a single identity. The server only com-
municates the parameters of the feature extractor and the class
embedding, rather than the classification matrix which con-
tains sensitive information. FedGC [171] aims to guarantee
that each client holds private class embeddings. They propose
a softmax-based regularizer to correct the gradients of the
embeddings by injecting a cross-client gradient term. Without
data sharing, FedFR [276] seeks to learn a model for the unla-
beled target domain by adapting from a source domain. The
source dataset is used to pre-train one client while on the other
two clients, a hierarchical clustering algorithm is used to gen-
erate pseudo labels for the target data. FedFR [141] employs a
globally shared dataset to regularize the local model training.
Only “hard” global samples, i.e., those with cosine similarity
greater than a threshold to any of the local data for training,
are supplied in order to improve local personalization with-
out increasing the computational load. In practice, a larger
threshold corresponds to less global data. To identify a trade-
off between personalizing and maintaining the local models’
similarity to the global model, contrastive regularization and
feature customization are exploited simultaneously. In Priva-
cyFace [157], privacy-agnostic class prototypes are generated
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TABLE 4. Comparison of Face Recognition papers. The considered
datasets are: MS-Celeb-1M [73], LFW [89], CPLFW/CALFW/SLLFW [47],
CFP-FP [189], AgeDB [164], MegaFace [107], VGGFace2 [27], IJB-A [109],
1B-B [229], JB-C [154], RFW [224], CASIAWebFace [249],
BUPT-BalancedFace [223].

Paper  Model Dataset # Clients # Rounds
MS-Celeb-1M,
Asian-DeepGlint, VGGFace2,

[14] ResNet-18 LFW, CPLFW, CALFW, 3,12 26
CFP-FP, AgeDB, MegaFace,
1JB-B/C

[31 CosF: CASIAWebFace, IJB-A/C, LFW 4.8 16 200

3 ‘osFace ebFace, I1B-A/C, 64, 10000

CASIAWebFace, VGGFace2,
LFW, SLLFW, CPLFW,

(171 ResNev34 CALFW, CFP-FP, AgeDB, 36

MegaFace, 1JB-B/C

12761 ResNet-34 MS-Celeb-1M, RFW 2,5
[141] CosFace MS-Celeb-1M, IIB-C 40 30
CASIAWebFace,
1157] ResNet-18 BUPT-Balancedface, REW, 4 10
: 1JB-B/C
MobileFaceNet MS-Celeb-1M, Private 20

[49]

MS-Celeb-1M,
CASIAWebFace, LEW, CFP-FP,
AgeDB

10, 50,

ResNet-50, MobileFaceNet 500, 2500

[191]

to prevent any specific individual in the cluster to be learned.
Moreover, during the local optimization, a consensus-aware
loss forces clients not to embed samples in inappropriate
feature spaces (i.e., private clusters). Ding et al. [49] use trans-
fer learning to speed up federated training on devices. They
present an architecture in which a private projector helps to
secure shared gradients without involving additional memory
consumption or computational costs. Shang et al. [191] test
the use of various loss functions. In particular, using pair-
based methods such as Multi-Similarity Loss can be more
accurate and communication-efficient when there are few
classes for each client. However, when there are many classes
on each client, using classification-based loss functions such
as the CosFace [217] loss can improve the global model faster
and with less communication cost.

E. MEDICAL IMAGING

Privacy issues are even more critical in the medical imaging
field, where the data could disclose very sensitive information
about the patient’s pathologies and medical history. In addi-
tion, although institutions and hospitals may gather the same
kind of medical data, those data may have varying charac-
teristics due to collection methods, standards and protocols,
institutional policies and priorities, different patient popula-
tion and different privacy regulations. The bottleneck of FL
in dealing with multi-source decentralized medical imaging
is the cross-client variance issue, which is exacerbated by the
restricted amount of training data that is typically accessible
for each client and the constrained number of clients.

1) DISEASE CLASSIFICATION

A FL framework based on FedAvg for detecting lung nodules
in CT scans is proposed in [13]. In this work the task is mod-
eled as a classification one. A FL. method for medical imaging
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classification, that uses multiple domains of siloed data, i.e.,
data from different sites with different features and labels,
is proposed in [8]. It exploits generative models for data
synthesis, which allows the training of a deep learning model
on the synthesized data from all domains. Roth et al. [185]
investigate using FedAvg for a breast density classification
task on real-world multi-institutional data. Tan et al. [205] use
transfer learning to improve performances over the central-
ized approach. The method is evaluated on a dataset of mam-
mograms for breast cancer diagnosis. Jimenez et al. [102]
test their framework on breast cancer datasets as well. They
exploit an ensemble of deep learning models and use a mem-
ory mechanism that allows the models to learn from the past
experience of other models. Additionally, Li et al. inves-
tigate multi-site fMRI classification for the Autism Brain
Imaging Data Exchange (ABIDE) dataset using federated
learning [131].

2) SEGMENTATION FOR DISEASES DETECTION

Yan et al. [241] aim to reduce client-to-client differences by
converting each client’s raw image data into a common image
space using image-to-image translation techniques while still
respecting FL’s privacy settings. The algorithm is validated
on PROSTATEx benchmark [11] for prostate cancer detec-
tion. Fedcross [238] targets four public datasets (MSD [9],
NCI-ISBI [140], PROMISE12 [20], and PROSTATEXx [11])
gathered in various clinics with different MRIs. They train
a global model sequentially across clients rather than per-
forming aggregation. FedDG [142] learns a federated model
from multiple remote source domains in order to directly
generalize to unknown target domains. The data distribu-
tion information is shared across clients via an efficient
continuous frequency space interpolation approach. Compre-
hensive studies on two common medical image segmentation
tasks (retinal fundus image segmentation and prostate MRI
segmentation) are performed. The narrowing of the general-
ization gap is also addressed in FedSM [236] which exploits
personalized models that match different data distributions.
A model selector then determines the closest model/data dis-
tribution for every test sample. The model has been evaluated
on retinal disc/cup and prostate segmentation. Segmentation
is addressed in FedDM [274] using bounding boxes as a form
of weak supervision. Together with a collaborative annotation
strategy, a hierarchical aggregation scheme is employed to
mitigate local drift. The method is evaluated on polyp and
prostate segmentation, using both magnetic resonance and
endoscopic images. FedCE [99] provides an approach to
compute client contributions from both the gradient and the
data space and then recommends a fair global aggregation
based on those estimates.

MRI brain tumor segmentation is a challenging task due
to several factors, including differences in tumor size, shape,
location, and appearance, as well as variations in imag-
ing protocols and equipment across different institutions.
These variations can result in differences in image quality,
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noise, and artifacts, making it difficult to accurately segment
brain tumors using traditional machine-learning approaches.
By training models on data from multiple sources, federated
learning can help to account for variability in imaging pro-
tocols and equipment, as well as capture a broader range
of tumor characteristics. Additionally, federated learning can
help to reduce the risk of data breaches and protect sen-
sitive patient information. Sheller et al. [192] are the first
to test FedAvg on a multi-institutional dataset, the brain
tumor segmentation dataset (BraTS) [158]. Li et al. use
a similar method and added a privacy-preserving feature
extraction technique to improve the model’s robustness [129].
A distillation-based strategy aimed at reducing communica-
tion resources requirements is used in [71].

3) MRI RECONSTRUCTION

Guo et al. propose a multi-center MRI reconstruction method,
FL-MRCM, using a federated learning approach that main-
tained the privacy of the local MRI data [72]. They help
the adaptation of the local models through adversarial align-
ment by sending global latent representations to a domain
discriminator. In FedMRI [64] the MRI reconstruction model
is divided into two parts: a shared encoder and a site-specific
decoder to mitigate domain shift. In FedGIMP [57], each site
generates a synthetic image to enforce MRI reconstruction:
the local generators follow a federated scheme to produce
synthetic priors, which are combined with global priors as
in adversarial models. FedPR [63] addresses the commu-
nication bottlenecks and catastrophic forgetting by learning
prompts with minimal trainable parameters and only updat-
ing local prompts in the approximate null space of global
prompts. In this way it efficiently tackles catastrophic forget-
ting ensuring that knowledge beyond the local distribution is
not overwritten. Wang et al. [221] deal with the problem of
misaligned unpaired neuroimaging data. They used signifi-
cantly distorted photos to train a federated-based framework
on brain image synthesis without breaking the hospital’s
privacy regulations.

4) COVID-19 DETECTION

Privacy protection is also required for contributing to break-
through medical discoveries that necessitate data sharing
across borders. The identification and segmentation of
COVID-19 lesions from medical images have been tar-
geted using deep learning with the aim to provide a use-
ful tool for doctors. Yan et al. [240] investigate the use
of FL for COVID-19 detection from chest X-ray images.
They conducted experiments using different backbones and
demonstrated the effectiveness of federated learning for train-
ing using distributed data without compromising privacy.
Dou et al. [53] present a study that shows the effectiveness
of FL for detecting COVID-19 lung abnormalities in CT
scans. They trained their framework with private data from
3 different medical institutions in Hong Kong and validate
their model on 4 external datasets, which consisted of CT
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TABLE 5. Comparison of Medical imaging papers. Prostate segmentation:
PROSTATEX [11], MSD [9], NCI-ISBI [20], PROMISE12 [140], I2CVB [119];
Retinal Segmentation: DRISHTI-GS1 [197], RIM-ONE [66], REFUGE [172],
RIGA [6]; Polyp Segmentation: CVC-DB (ClinicDB, ColonDB) [19],
Kvasir-seg [97]; Breast cancer classification: INBreast [163], DMIST [176],
DDSM [82], CheXpert [93], ChestX-ray8 [225], Camelyon 16 and 17 [139];
MRI Segmentation: BraTS [158], IXI [1], fastMRI [110], FeTS [173],

HPKS [100]; Covid detection: COVIDx [222], COVID-19-CT-Seg [152],
CC-19 [113], LIDC [12], COVID-CT-Dataset [267], COVID-QU-EX [41].

Paper

Model

Dataset

# Clients

# Rounds

[241]

[238]

[142]

[236]

[274]

[99]

[192]

[129]

[71]

[131]

[64]

[57]

[221]

[63]

[240]

[53]

[113]

[265]

[13]
[8]

[185]

[205]

[102]

8-layer CNN

3DUNet

2D Unet-like

UNet

UNet

UNet

UNet

ResNet101

PSPNet-ResNet101

2-layer NN

UNet

UNet

8 FC layers

CycleGAN

Swin, ConvNet

ResNeXt, ResNet-18,
MobileNet-v2

RetinaNet

SegCaps

AH-Net

GhostNet, ResNet-50/101

VNet
UNet

DenseNet-121

MobileNet, DenseNet-121,

ResNet-50, Xception

ResNet-22

PROSTATEX, Private

PROSTATEXx, MSD, NCI-ISBI,

PROMISE12
DRISHTI-GS1, RIM-ONE,

REFUGE, NCI-ISBI,
PROMISE12, 2CVB

DRISHTIGSI, RIM-ONE,
REFUGE, NCBI-ISBI, 12CVB,
PROMISE12, PROSTATEx

NCI-ISBI, PROMISE12,
12CVB, CVC-DB, Kvasir-seg

DRISHTIGS1, RIM-ONE,
REFUGE, RIGA, NCI-ISBI,
PROMISE12, 2CVB

BraTS

BraTS

CheXpert, ChestX-ray8, BraTS

ABIDE

IXI, BraTs, fastMRI, HPKS

BraTSs, fastMRI, Private

IXI, BraTS$, fastMRI, Private

IXI, BraTS

fastMRI, FeTS, IXI, Private

COVIDx

COVID-19-CT-Seg, Private

CC-19

LIDC, Private

COVID-CT-Dataset,
COVID-QU-Ex, COVIDx

LIDC
Camelyon-16/17
DMIST, Private

DDSM

INBreast, Private

2

6

~[4,32]

13

2,3

4

100

25, 50,
100, 200,
400

100

150

200

200

300

50

50

50

100

80

100

75

500, 1000

30

~[3.5]

300

60

50

images from different countries. Kumar et al. [113] propose
a blockchain-federated learning approach for COVID-19
detection from CT scans to facilitate privacy-preserving
learning. The global model, like blockchains, is main-
tained as a distributed ledger with expanding lists of data
records that are privacy-ensured by cryptographic hashes.
Yang et al. [242], propose a federated semi-supervised learn-
ing method for segmenting COVID-19 regions in chest CT
images using data from China, Italy, and Japan. They used
a combination of labelled and unlabeled data from the par-
ticipating sites to train the model. Finally, Zhang et al. [265]
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suggest a dynamic-fusion-based federated learning approach
for COVID-19 detection which exploits both X-ray and CT
scan images. The study presented a method for dynamically
fusing the model updates from different clients.

VIl. BENCHMARKS

Comparing performances of different federated learning
schemes is a challenging task since it is a relatively new area
of research and there is still some lack of standardization in its
application. In particular, although several efforts have been
made to introduce standard benchmarks, the community has
yet to agree on a common setting for FL.

The lack of a consistent data distribution across the
clients and of a common choice of parameters (e.g., num-
ber of clients, local epochs, rounds, etc.) makes often the
obtained performances not directly comparable. For this rea-
son, Tables 1,2,3, 4 and 5 include also the various considered
settings for the various approaches tackling the different
tasks.

Without a standardized setting, it is hard to determine
whether a particular algorithm or model is really better than
another, or if the difference in performance is simply due to
differences in the experimental setup. Nevertheless, in this
section, we introduce the main efforts in outlining bench-
marks and then we present some results, trying to organize
them into groups of comparable outcomes.

LEAF [26] offers a benchmark for federated learning
that focuses on edge devices with limited computational
resources. It includes benchmark models and several datasets,
including a federated split for EMNIST [42], the so-called
FEMNIST. FedML [78] proposes a benchmark suited for
federated learning that includes both vision and non-vision
datasets. The benchmark comprehends baseline models
(e.g., FedAvg [155] and FedProx [128]) and federated splits
for CIFAR-10 [112] and CIFAR-100. FedScale [114] presents
a benchmark for federated learning that focuses on scaling up
to large numbers of devices. It includes some vision datasets,
among which Openlmage [111] and Google Landmark [228],
as well as baseline models and evaluation metrics. These
benchmarks [26], [78], [114] present experiments with var-
ious settings, including different numbers of devices, data
distribution, and organizations of the communication rounds.

For the two tasks of image classification and semantic
segmentation we present a comparison of recent papers on the
most common dataset respectively in Tables 6 and 7, while for
the other tasks the great variability of considered datasets and
settings make the comparison less significant.

Starting from image classification we focus on the
CIFAR-10/100 dataset, which is the most common choice for
works tackling this task. Following the previous discussion,
we divided Table 6 into blocks where each block corresponds
to a set of experiments in the same conditions: results are
comparable inside the same block but otherwise refer to
different settings. As a general result, it is possible to see how
state-of-the-art techniques provide a relevant improvement
with respect to baseline approaches like FedAvg or FedProx.
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Results for semantic segmentation are in Table 7. Here
there is a much more limited number of comparable
approaches and two most common choices for the dataset:
Cityscapes and CamVID. Again, ad-hoc approaches for the
task achieve gains of 5 — 10% with respect to the baseline
FedAvg scheme.

VIIl. NEW TRENDS

Traditional machine learning algorithms are commonly
trained on specific datasets to address particular tasks. How-
ever, this approach encounters limitations when confronted
with novel tasks or domains lacking sufficient labeled data.
Meta-learning offers a solution to this challenge by learning
from a diverse set of tasks, facilitating adaptation to new
tasks efficiently. Additionally, it could contribute to FL by
assisting in selecting relevant tasks or clients in each round,
which enhances overall efficiency. Consequently, it would
allow for personalized FL applications, making it easier to
deploy personalized models. Although considerable research
has been conducted on this subject [30], [101], there is a
need for future studies to delve into meta-learning tech-
niques and facilitate the emergence of personalized federated
learning [169], [244].

In real-world computer vision settings, especially when the
clients are users’ mobile devices it is also not too realistic to
assume the availability of labeled data at client side. Thus,
federated unsupervised domain adaptation approaches are
another intriguing research direction [193], [245].

Another salient aspect to consider is that computer vision
primarily focused on single-modality data, i.e, RGB images,
and single objective tasks. However, real-world FL appli-
cations often involve multiple data types, including images,
textual descriptions, 3D or depth data, and other data com-
ing from different sensors. Learning a joint representation
from multiple modalities, typically leads to deeper and
more meaningful understandings of the provided information
[16], [184]. Nevertheless, multimodal data introduces addi-
tional challenges such as modality incongruities (e.g., dif-
ferent noise and distribution shifts) and missing modalities
[65] that are even more challenging in FL settings where they
can appear in a client-dependent way. Recent works extend
FL concepts to tackle these problems in vision-language
tasks [36], [65], [234], [255]. To this end, we expect more
research on multimodal FL, by allowing the aggregation of
knowledge from different data modalities in order to train a
more comprehensive and robust model.

Additionally, there is a rising demand for more extensive
research regarding the use of foundation models in FL. These
models can be employed on the server-side to substantially
enhance the performance and convergence speed of computer
vision tasks. The pre-training of the models from scratch is
a costly operation, both in terms of computational resources
and training data. The utilization of foundation models
can help overcome this issue. Therefore, researchers have
started to explore novel approaches, taking inspiration from
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TABLE 6. Performance comparison for recent papers on image
classification using the CIFAR 10/100 datasets. Cl)\‘l stands for CIFAR-N

(N =10 or N =100) non-i.i.d. partitioned using a Dirichlet distribution
parametrized by o =x. In the parameters c is the total number of clients
while the percentage of clients per round is behind the parenthesis and r
is the total number of rounds. Results taken from [24], [67], [120],

[118], and [148].

Method Model Params. Accuracy

0.1 0.1
o Cioo

FedAve [155] ResNet-8 10¢ (100%), 80t 649 388
FedProx [128] ResNet-8 10 (100%), 80 1 66.1 420
SCAFFOLD [105] ResNet-8 10 (100%), 80 ¢ 666 438
FedDyn [2] ResNet-8 10¢ (100%), 80t 638 364
FedPVR [120] ResNet-8 10¢ (100%), 80t 693 435
FedAvg [155] VGG-11 10¢ (100%), 80t 693 343
FedProx [128] VGG-11 10¢ (100%), 80 ¢ 721 350
SCAFFOLD [105] VGG-11 10¢ (100%), 80t 741 434
FedDyn [2] VGG-11 10¢ (100%), 80 T 774 438
FedPVR [120] VGG-11 10¢ (100%), 80t 782 435
cfs® Do
FedAvg [155] ResNet-18 100 ¢ (15%), 1000 ¢ 798 418
FedProx [128] ResNet-18 100 ¢ (15%), 1000t 798 418
SCAFFOLD [105] ResNet-18 100 ¢ (15%), 1000 © 825 503
FedDyn [2] ResNet-18 100 ¢ (15%), 1000 ¢ 823 5Ll
FedDC [67] ResNet-18 100 ¢ (15%), 1000 ¢ 846 539
FedAve [155] ResNet-18 100 ¢ (100%), 1000 ¢ 791 401
FedProx [128] ResNet-18 100 ¢ (100%), 1000 ¢ 789 409
SCAFFOLD [105] ResNet-18 100 ¢ (100%), 1000 ¢ 830 504
FedDyn [2] ResNet-18 100 ¢ (100%), 1000 841 519
FedDC [67] ResNet-18 100 ¢ (100%), 1000 ¢ 843 549
o oo
FedAve [155] ResNet-18 100 ¢ (5%). 10k/20k r 650 303
FedSAM [24] ResNet-18 100 ¢ (5%), 10k/20k r 702 310
Fed ASAM [24] ResNet-18 100 ¢ (5%), 10k/20K ¢ 737 360
FedAvgM [87] ResNet-18 100 ¢ (5%), 10k/20k r 100 10
FedProx [128] ResNet-18 100 ¢ (5%), 10k/20k r 627 312
SCAFFOLD [105] ResNet-18 100 ¢ (5%), 10k/20k r 2310
FedDyn [2] ResNet-18 100 ¢ (5%), 10k/20k r 677 10
AdaBest [212] ResNet-18 100 ¢ (5%), 10k/20K ¢ 668 299
FedAvgM [87] + ASAM ResNet-18 100 ¢ (5%), 10k/20k r 77310
FedProx [128] + ASAM ResNet-18 100 ¢ (5%), 10k/20k r 737 361
SCAFFOLD [105] + ASAM ResNet-18 100 ¢ (5%), 10k/20k r 778 437
FedDyn [2] + ASAM ResNet-18 100 ¢ (5%), 10k/20k r 774 222
AdaBest [212] + ASAM ResNet-18 100 ¢ (5%), 10k/20K ¢ 75 398
FedAve [155] ResNet-18 100 ¢ (20%), 10k/20k ¢ 685 386
FedSAM [24] ResNet-18 100 ¢ (20%), 10k/20k r 729 286
FedASAM [24] ResNet-18 100 ¢ (20%), 10k/20k r 761 408
FedAvgM [87] ResNet-18 100 ¢ (20%), 10k/20k £ 100 406
FedProx [128] ResNet-18 100 ¢ (20%), 10k/20k r 684 386
SCAFFOLD [105] ResNet-18 100 ¢ (20%), 10k/20k r 156 10
FedDyn [2] ResNet-18 100 ¢ (20%), 10k/20k r 738 14
AdaBest [212] ResNet-18 100 ¢ (20%), 10k/20K £ 723 391
FedAvgM [87] + ASAM ResNet-18 100 ¢ (20%), 10k/20k £ 849 396
FedProx [128] + ASAM ResNet-18 100 ¢ (20%), 10k/20k 1 758 409
SCAFFOLD [105] + ASAM ResNet-18 100 ¢ (20%), 10k/20k 1 779 426
FedDyn [2] + ASAM ResNet-18 100 ¢ (20%), 10k/20k r 810 235
AdaBest [212] + ASAM ResNet-18 100 ¢ (20%), 10k/20K £ 784 450
& (R (1
FedAve [155] ResNet-18 100 ¢ (10/2%), 4000 t 80.0 494
FedProx [128] ResNet-18 100 ¢ (10/2%), 4000 ¢ 776 487
SCAFFOLD [105] ResNet-18 100 ¢ (10/2%), 4000 © 794 532
FedNova [219] ResNet-18 100 ¢ (10/2%), 4000 © 780 500
FedAve [155] + WSM [118] ResNet-18 100 ¢ (10/2%), 4000 ¢ 864 640
FedProx [128] + WSM [118] ResNet-18 100 ¢ (10/2%), 4000 © 818 562
SCAFFOLD [105]+ WSM [118]  ResNet-18 100 ¢ (10/2%), 4000 ¢ 812 572
FedNova [219] + WSM [118] ResNet-18 100 ¢ (10/2%), 4000 © 780 500
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TABLE 6. (Continued.) Performance comparison for recent papers on
image classification using the CIFAR 10/100 datasets. CI)\(I stands for
CIFAR-N (N =10 or N =100) non-i.i.d. partitioned using a Dirichlet
distribution parametrized by « =x. In the parameters c is the total
number of clients while the percentage of clients per round is behind the
parenthesis and r is the total number of rounds. Results taken from [24],
[67], [118], [120], and [148].

Method Model Params. Accuracy

1 0.1 0.01
o €10 €10

FedAvg [155] LeNet-5 100 ¢ (10%), 1000t 695 479 210
FedProx [128] LeNet-5 100 ¢ (10%). 1000 © 76 486 204
MOON [124] LeNet-5 100 ¢ (10%), 1000 r 71.1 48.8 19.4
SCAFFOLD [105] LeNet-5 100 ¢ (10%). 1000t 533 359 156
FedAvgM [87] LeNet-5 100 ¢ (10%). 1000t 70 519 210
FedDyn [2] LeNet-5 100 ¢ (10%), 1000 r 74.9 419 17.9
MimeLite [104] LeNet-5 100 ¢ (10%). 1000t 80 533 207
GradMA [148] LeNet-5 100 ¢ (10%). 1000t 799 659 308

CPib(5/10/50%)
FedAvg [155] VGG-11 100¢ (5/10/50%), 1000r 560 612 648
FedProx [128] VGG-11 100¢ (5/10/50%), 1000r 559 613 647
MOON [124] VGG-11 100 ¢ (5/10/50%), 1000r 554 606 645
SCAFFOLD [105] VGG-11 100¢ (5/10/50%), 1000r 322 347 457
FedAvgM [87] VGG-11 100 ¢ (5/10/50%), 1000r 559 613 649
FedDyn [2] VGG-11 100 ¢ (5/10/50%), 1000r 530 585 617
MimeLite [104] VGG-11 100¢ (5/10/50%). 1000r 580 633 647
GradMA [148] VGG-11 100 ¢ (5/10/50%), 1000r  59.5 635 657

TABLE 7. Performance comparison for semantic segmentation on the
Cityscapes and CamVID datasets). c is the total number of clients while
the number of clients per round is between parenthesis and r is the total
number of rounds. Results taken from [24], [159].

Method Model Params. mloU

Cityscapes ~ CamVID

FedAvg [155] BiSeNetv2 160/900 r 45.1 58.4
FedProx [128] BiSeNetv2 160/900 r 449 583
FedDyn [2] BiSeNetv2 160/900 r 452 59.4
MOON [124] BiSeNetv2 160/900 r 45.8 589
FedSeg [159] BiSeNetv2 160/900 r 50.2 63.5
Cityscapes
FedAvg [155] BiSeNetv2 144 ¢ (5),1500 387
FedSAM [24] BiSeNetv2 144 ¢ (5),1500 r 412
FedASAM [24] BiSeNetv2 144 ¢ (5),1500 423
SiloBN [8] BiSeNetv2 144 ¢ (5).1500 r 46.0
SiloBN [8] + SAM BiSeNetv2 144 ¢ (5).1500 r 49.1
SiloBN [8] + ASAM BiSeNetv2 144 ¢ (5),1500 r 49.8

traditional transfer learning methods. These techniques aim
to facilitate the seamless integration of large-scale pre-trained
models, such as BERT [208] or CLIP [146], into the existing
systems.

IX. CONCLUSION

Federated learning research has grown significantly over
the past years, and computer vision has been one of the
driving fields. The large size of training data and the pri-
vacy issues in some application fields like face recogni-
tion or medical imaging make federated learning a valuable
tool for vision applications. Consequently, many approaches
have been developed and this survey highlights the most
significant ones.
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With respect to standard deep learning approaches for
computer vision, FL research has not evolved in a straight-
forward comparison of performances on benchmark datasets.
Instead, most works try to address various practical problems
by also designing the considered setting. On one side, this
diversity of research directions stimulated the development
of a variety of new techniques and ideas. On the other hand,
it makes difficult to perform comparisons across approaches
and consequently the understanding of which are the best
building blocks to be used in real applications. To this aim,
in this paper, we presented an overview of the most relevant
tasks, problems and methods, in order to gain a better view
of the whole picture. Despite these challenges, there are
ongoing efforts to standardize federated learning settings.
As the field continues to grow, it is likely that a more standard-
ized approach to federated learning will emerge, enabling
researchers to better compare results and build upon previous
work.

Another limitation regards the target application: most of
the techniques focus on one or a few vision tasks, although
the algorithms could technically address other tasks. Fol-
lowing this observation, we firstly presented the employed
methodologies in a task-agnostic way in Section V and then
introduced the various approaches organized according to the
considered task in Section VI. We think that our categoriza-
tion of the main methods could be beneficial for new research
as different methods and strategies can be combined for better
performances.
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