10,151 research outputs found

    Privacy Preserving User Data Publication In Social Networks

    Get PDF
    Recent trends show that the popularity of Social Networks (SNs) has been increasing rapidly. From daily communication sites to online communities, an average person\u27s daily life has become dependent on these online networks. Additionally, the number of people using at least one of the social networks have increased drastically over the years. It is estimated that by the end of the year 2020, one-third of the world\u27s population will have social accounts. Hence, user privacy protection has gained wide acclaim in the research community. It has also become evident that protection should be provided to these networks from unwanted intruders. In this dissertation, we consider data privacy on online social networks at the network level and the user level. The network-level privacy helps us to prevent information leakage to third-party users like advertisers. To achieve such privacy, we propose various schemes that combine the privacy of all the elements of a social network: node, edge, and attribute privacy by clustering the users based on their attribute similarity. We combine the concepts of k-anonymity and l-diversity to achieve user privacy. To provide user-level privacy, we consider the scenario of mobile social networks as the user location privacy is the much-compromised problem. We provide a distributed solution where users in an area come together to achieve their desired privacy constraints. We also consider the mobility of the user and the network to provide much better results

    Privacy-Preserving Photo Sharing based on a Secure JPEG

    Get PDF
    Sharing photos online is a common activity on social networks and photo hosting platforms, such as Facebook, Pinterest, Instagram, or Flickr. However, after reports of citizens surveillance by governmental agencies and the scandalous leakage of celebrities private photos online, people have become concerned about their online privacy and are looking for ways to protect it. Popular social networks typically offer privacy protection solutions only in response to the public demand and therefore are often rudimental, complex to use, and provide limited degree of control and protection. Most solutions either allow users to control who can access the shared photos or for how long they can be accessed. In contrast, in this paper, we take a structured privacy by design approach to the problem of online photo privacy protection. We propose a privacy-preserving photo sharing architecture that takes into account content and context of a photo with privacy protection integrated inside the JPEG file itself in a secure way. We demonstrate the proposed architecture with a prototype mobile iOS application called ProShare that offers scrambling as the privacy protection tool for a selected region in a photo, secure access to the protected images, and secure photo sharing on Facebook

    Secure JPEG Scrambling enabling Privacy in Photo Sharing

    Get PDF
    With the popularization of online social networks (OSNs) and smart mobile devices, photo sharing is becoming a part of people’ daily life. An unprecedented number of photos are being uploaded and shared everyday through online social networks or photo hosting services, such as Facebook, Twitter, Instagram, and Flickr. However, such unrestrained online photo or multimedia sharing has raised serious privacy concerns, especially after reports of citizens surveillance by governmental agencies and scandalous leakage of private photos from prominent photo sharing sites or online cloud services. Popular OSNs typically offer privacy protection solutions only in response to the public demand and therefore are often rudimental, complex to use, and provide limited degree of control and protection. Most solutions allow users to control either who can access the shared photos or for how long they can be accessed. In contrast, in this paper, we take a structured privacy by design approach to the problem of online photo privacy protection. We propose a privacy-preserving photo sharing architecture based on a secure JPEG scrambling algorithm capable of protecting the privacy of multiple users involved in a photo. We demonstrate the proposed photo sharing architecture with a prototype application called ProShare that offers JPEG scrambling as the privacy protection tool for selected regions in a photo, secure access to the protected images, and secure photo sharing on Facebook

    Online privacy: towards informational self-determination on the internet : report from Dagstuhl Perspectives Workshop 11061

    Get PDF
    The Dagstuhl Perspectives Workshop "Online Privacy: Towards Informational Self-Determination on the Internet" (11061) has been held in February 6-11, 2011 at Schloss Dagstuhl. 30 participants from academia, public sector, and industry have identified the current status-of-the-art of and challenges for online privacy as well as derived recommendations for improving online privacy. Whereas the Dagstuhl Manifesto of this workshop concludes the results of the working groups and panel discussions, this article presents the talks of this workshop by their abstracts

    Online Privacy as a Collective Phenomenon

    Full text link
    The problem of online privacy is often reduced to individual decisions to hide or reveal personal information in online social networks (OSNs). However, with the increasing use of OSNs, it becomes more important to understand the role of the social network in disclosing personal information that a user has not revealed voluntarily: How much of our private information do our friends disclose about us, and how much of our privacy is lost simply because of online social interaction? Without strong technical effort, an OSN may be able to exploit the assortativity of human private features, this way constructing shadow profiles with information that users chose not to share. Furthermore, because many users share their phone and email contact lists, this allows an OSN to create full shadow profiles for people who do not even have an account for this OSN. We empirically test the feasibility of constructing shadow profiles of sexual orientation for users and non-users, using data from more than 3 Million accounts of a single OSN. We quantify a lower bound for the predictive power derived from the social network of a user, to demonstrate how the predictability of sexual orientation increases with the size of this network and the tendency to share personal information. This allows us to define a privacy leak factor that links individual privacy loss with the decision of other individuals to disclose information. Our statistical analysis reveals that some individuals are at a higher risk of privacy loss, as prediction accuracy increases for users with a larger and more homogeneous first- and second-order neighborhood of their social network. While we do not provide evidence that shadow profiles exist at all, our results show that disclosing of private information is not restricted to an individual choice, but becomes a collective decision that has implications for policy and privacy regulation
    • 

    corecore