11 research outputs found

    Matlab Simulations of Ad Hoc Sensors Network Algorithms

    Get PDF
    Algorithms, implemented for the problem of ad hoc wireless sensors network, are simulated on Matlab platform, with a step-by- step evaluations of a case study. The main goal is to maximize the lifetimes of sensors by sharing sensors subsets, which cover a number of targeted zones, according to their minimum coverage failure probabilities. Different sensor subsets are activated according to their coverage failure probabilities, as well as a minimum specified value of coverage failure probability. DOI: 10.17762/ijritcc2321-8169.15015

    A Hybrid Scheme based on Alternative Scalar Leader Election (HS-ASLE) for Redundant Data Minimization in Multi-event Occurrence Scenario for WMSNs

    Get PDF
    The current paper reports a hybrid approach namely “Hybrid Scheme based on Alternative Scalar Leader Election (HS-ASLE)” for camera sensor actuation in multi-event occurrence scenario. In the proposed approach, the whole monitored zone gets segregated into multiple virtual sub-compartments and in each of the sub-compartments, one and three scalar leaders are elected alternatively that behave as the representatives of scalars to report event information. During the event occurrence, the event information gets trapped through the scalar leaders in lieu of scalars and the leaders convey the event occurrence information to the respective camera sensors. Pervasive experiment and observation have been ordained to mark the impact of varying the number of deployed scalar sensors and camera sensors individually on various performance parameters in multi-event occurrence ambience. Further, the numerical outcomes attained in terms of number of cameras actuated, coverage ratio, redundance ratio and energy expenditure for camera activation proclaim the effectiveness of our proposed HS-ASLE over the other two existing approaches in literature. Moreover, it is marked that our proposed approach attains maximal event region coverage with least camera activation, least redundant data transmission and lowest energy expenditure for camera sensor actuation as compared to two other approaches, which justify the precedence of our proposition over the other existing approaches

    Method for Optimal Sensor Deployment on 3D Terrains Utilizing a Steady State Genetic Algorithm with a Guided Walk Mutation Operator Based on the Wavelet Transform

    Get PDF
    One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains

    A Trapezoidal Fuzzy Membership Genetic Algorithm (TFMGA) for Energy and Network Lifetime Maximization under Coverage Constrained Problems in Heterogeneous Wireless Sensor Networks

    Get PDF
    Network lifetime maximization of Wireless Heterogeneous Wireless Sensor Networks (HWSNs) is a difficult problem. Though many methods have been introduced and developed in the recent works to solve network lifetime maximization. However, in HWSNs, the energy efficiency of sensor nodes becomes also a very difficult issue. On the other hand target coverage problem have been also becoming most important and difficult problem. In this paper, new Markov Chain Monte Carlo (MCMC) is introduced which solves the energy efficiency of sensor nodes in HWSN. At initially graph model is modeled to represent HWSNs with each vertex representing the assignment of a sensor nodes in a subset. At the same time, Trapezoidal Fuzzy Membership Genetic Algorithm (TFMGA) is proposed to maximize the number of Disjoint Connected Covers (DCC) and K-Coverage (KC) known as TFMGA-MDCCKC. Based on gene and chromosome information from the TFMGA, the gene seeks an optimal path on the construction graph model that maximizes the MDCCKC. In TFMGA gene thus focuses on finding one more connected covers and avoids creating subsets particularly. A local search procedure is designed to TFMGA thus increases the search efficiency. The proposed TFMGA-MDCCKC approach has been applied to a variety of HWSNs. The results show that the TFMGA-MDCCKC approach is efficient and successful in finding optimal results for maximizing the lifetime of HWSNs. Experimental results show that proposed TFMGA-MDCCKC approach performs better than Bacteria Foraging Optimization (BFO) based approach, Ant Colony Optimization (ACO) method and the performance of the TFMGA-MDCCKC approach is closer to the energy-conserving strategy

    A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks

    Get PDF
    As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime

    Optimization of Self-Directed Target Coverage in Wireless Multimedia Sensor Network

    Get PDF
    Video and image sensors in wireless multimedia sensor networks (WMSNs) have directed view and limited sensing angle. So the methods to solve target coverage problem for traditional sensor networks, which use circle sensing model, are not suitable for WMSNs. Based on the FoV (field of view) sensing model and FoV disk model proposed, how expected multimedia sensor covers the target is defined by the deflection angle between target and the sensor’s current orientation and the distance between target and the sensor. Then target coverage optimization algorithms based on expected coverage value are presented for single-sensor single-target, multisensor single-target, and single-sensor multitargets problems distinguishingly. Selecting the orientation that sensor rotated to cover every target falling in the FoV disk of that sensor for candidate orientations and using genetic algorithm to multisensor multitargets problem, which has NP-complete complexity, then result in the approximated minimum subset of sensors which covers all the targets in networks. Simulation results show the algorithm’s performance and the effect of number of targets on the resulting subset

    Learning automata-based solution to target coverage problem for directional sensor networks with adjustable sensing ranges

    Get PDF
    The extensive applications of directional sensor networks (DSNs) in a wide range of situations have attracted a great deal of attention. One significant problem linked with DSNs is target coverage, which primarily operate based on simultaneously observing a group of targets occurring in a set area, hence maximizing the network lifetime. As there are limitations to the directional sensors’ sensing angle and energy resource, designing new techniques for effectively managing the energy consumption of the sensors is crucial. In this study, two problems were addressed. First, a new learning automata-based algorithm is proposed to solve the target coverage problem, in cases where sensors have multiple power levels (i.e., sensors have multiple sensing ranges), by selecting a subset of sensor directions that is able to monitor all the targets. In real applications, targets may have different coverage quality requirements, which leads to the second; the priority-based target coverage problem, which has not yet been investigated in the field of study. In this problem, two newly developed algorithms based on learning automata and greedy are proposed to select a subset of sensor directions in a way that different coverage quality requirements of all the targets could be satisfied. All of the proposed algorithms were assessed for their performances via a number of experiments. In addition, the effect of each algorithm on maximizing network lifetime was also investigated via a comparative study. All algorithms are successful in solving the problems; however, the learning automata-based algorithms are proven to be superior by up to 18% comparing with the greedy-based algorithms, when considering extending the network lifetime

    Priority-based target coverage in directional sensor networks using a genetic algorithm

    Get PDF
    AbstractSensor networks have been applied in a wide variety of situations. Recently directional sensor networks consisting of directional sensors have gained attention. As for the traditional target coverage problem, the limited sensing angle of directional sensors makes it even more challenging. Moreover, individual targets may also be associated with differentiated priorities. Considering the distance between the directional sensors and targets influences sensing quality, this paper proposes the priority-based target coverage problem and strives to choose a minimum subset of directional sensors that can monitor all targets, satisfying their prescribed priorities. Due to the NP-Complete complexity, the minimum subset of directional sensors is approximated by using a genetic algorithm. Simulation results reveal the effects of multiple factors on the size of the resulting subset
    corecore