755 research outputs found

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers

    Performance analysis of resource scheduling in LTE femtocell with hybrid access mode

    Get PDF
    Femtocell is a promising technology that intends in solving the indoor coverage problems so as to enhance the cell capacity. The overall network performance, in turn depends on the access methods used by the femtocells. The access method is used to identify about the user’s connectivity with the femtocell network. There are three access mechanisms defined in Third Generation partnership Project (3GPP) specification for Long Term Evolution (LTE) femtocells: open, closed and hybrid access mechanisms. Hybrid access mechanism is mostly preferred by the network for the effective utilization of resources. But, it is important to regulate the proper scheduling scheme for them. In this paper, scheduling in femtocell is investigated, where, among the non subscribers, preference is given to the users who have high throughput priority metric, thereby increasing overall throughput of the network

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Dynamic resource management for LTE-based hybrid access femtocell systems

    Get PDF
    Hybrid access femtocells for long term evolution (LTE)-based cellular networks provide a tradeoff between closed and open access femtocells whereby all subscribers are granted access albeit with priority given to closed access subscribers. Due to the need to accommodate both closed and open access subscribers, quality of service (QoS) provisioning for LTE-based hybrid access femtocells has become more challenging. This paper addresses this issue and proposes a new dynamic resource management scheme for such hybrid architectures. In particular, the proposed scheme first classifies and performs lexicographic admission control on the incoming traffic data flows using an optimal greedy algorithm. A suboptimal delay-bounded packet scheduling algorithm and a dual decomposition-based power allocation algorithm are developed to solve the non-convex maximization problem such that the weighted sum rate of each femtocell is maximized, subject to bounded packet delays and power constraints. Simulation results show that the proposed scheme can significantly outperform existing schemes in terms of QoS, throughput and fairness
    • …
    corecore