94 research outputs found

    Optimizing the computation of overriding

    Full text link
    We introduce optimization techniques for reasoning in DLN---a recently introduced family of nonmonotonic description logics whose characterizing features appear well-suited to model the applicative examples naturally arising in biomedical domains and semantic web access control policies. Such optimizations are validated experimentally on large KBs with more than 30K axioms. Speedups exceed 1 order of magnitude. For the first time, response times compatible with real-time reasoning are obtained with nonmonotonic KBs of this size

    Expressive probabilistic description logics

    Get PDF
    AbstractThe work in this paper is directed towards sophisticated formalisms for reasoning under probabilistic uncertainty in ontologies in the Semantic Web. Ontologies play a central role in the development of the Semantic Web, since they provide a precise definition of shared terms in web resources. They are expressed in the standardized web ontology language OWL, which consists of the three increasingly expressive sublanguages OWL Lite, OWL DL, and OWL Full. The sublanguages OWL Lite and OWL DL have a formal semantics and a reasoning support through a mapping to the expressive description logics SHIF(D) and SHOIN(D), respectively. In this paper, we present the expressive probabilistic description logics P-SHIF(D) and P-SHOIN(D), which are probabilistic extensions of these description logics. They allow for expressing rich terminological probabilistic knowledge about concepts and roles as well as assertional probabilistic knowledge about instances of concepts and roles. They are semantically based on the notion of probabilistic lexicographic entailment from probabilistic default reasoning, which naturally interprets this terminological and assertional probabilistic knowledge as knowledge about random and concrete instances, respectively. As an important additional feature, they also allow for expressing terminological default knowledge, which is semantically interpreted as in Lehmann's lexicographic entailment in default reasoning from conditional knowledge bases. Another important feature of this extension of SHIF(D) and SHOIN(D) by probabilistic uncertainty is that it can be applied to other classical description logics as well. We then present sound and complete algorithms for the main reasoning problems in the new probabilistic description logics, which are based on reductions to reasoning in their classical counterparts, and to solving linear optimization problems. In particular, this shows the important result that reasoning in the new probabilistic description logics is decidable/computable. Furthermore, we also analyze the computational complexity of the main reasoning problems in the new probabilistic description logics in the general as well as restricted cases

    Modeling Deep Disagreement in Default Logic

    Get PDF
    Default logic has been a very active research topic in artificial intelligence since the early 1980s, but has not received as much attention in the philosophical literature thus far. This paper shows one way in which the technical tools of artificial intelligence can be applied in contemporary epistemology by modeling a paradigmatic case of deep disagreement using default logic. In §1 model-building viewed as a kind of philosophical progress is briefly motivated, while §2 introduces the case of deep disagreement we aim to model. On the heels of this, §3 defines our formal framework, viz., a refined Horty-style default logic. §4 then uses the framework to model deep disagreement, and finally §5 provides a critical discussion of the result

    Reasoning about Typicality and Probabilities in Preferential Description Logics

    Get PDF
    In this work we describe preferential Description Logics of typicality, a nonmonotonic extension of standard Description Logics by means of a typicality operator T allowing to extend a knowledge base with inclusions of the form T(C) v D, whose intuitive meaning is that normally/typically Cs are also Ds. This extension is based on a minimal model semantics corresponding to a notion of rational closure, built upon preferential models. We recall the basic concepts underlying preferential Description Logics. We also present two extensions of the preferential semantics: on the one hand, we consider probabilistic extensions, based on a distributed semantics that is suitable for tackling the problem of commonsense concept combination, on the other hand, we consider other strengthening of the rational closure semantics and construction to avoid the so-called blocking of property inheritance problem.Comment: 17 pages. arXiv admin note: text overlap with arXiv:1811.0236

    Properties of ABA+ for Non-Monotonic Reasoning

    Full text link
    We investigate properties of ABA+, a formalism that extends the well studied structured argumentation formalism Assumption-Based Argumentation (ABA) with a preference handling mechanism. In particular, we establish desirable properties that ABA+ semantics exhibit. These pave way to the satisfaction by ABA+ of some (arguably) desirable principles of preference handling in argumentation and nonmonotonic reasoning, as well as non-monotonic inference properties of ABA+ under various semantics.Comment: This is a revised version of the paper presented at the worksho

    Reasoning about exceptions in ontologies: from the lexicographic closure to the skeptical closure

    Full text link
    Reasoning about exceptions in ontologies is nowadays one of the challenges the description logics community is facing. The paper describes a preferential approach for dealing with exceptions in Description Logics, based on the rational closure. The rational closure has the merit of providing a simple and efficient approach for reasoning with exceptions, but it does not allow independent handling of the inheritance of different defeasible properties of concepts. In this work we outline a possible solution to this problem by introducing a variant of the lexicographical closure, that we call skeptical closure, which requires to construct a single base. We develop a bi-preference semantics semantics for defining a characterization of the skeptical closure
    corecore