1,076 research outputs found

    Stubborn Predictions in Primary Visual Cortex

    Get PDF
    Perceivers can use past experiences to make sense of ambiguous sensory signals. However, this may be inappropriate when the world changes and past experiences no longer predict what the future holds. Optimal learning models propose that observers decide whether to stick with or update their predictions by tracking the uncertainty or "precision" of their expectations. However, contrasting theories of prediction have argued that we are prone to misestimate uncertainty-leading to stubborn predictions that are difficult to dislodge. To compare these possibilities, we had participants learn novel perceptual predictions before using fMRI to record visual brain activity when predictive contingencies were disrupted-meaning that previously "expected" events become objectively improbable. Multivariate pattern analyses revealed that expected events continued to be decoded with greater fidelity from primary visual cortex, despite marked changes in the statistical structure of the environment, which rendered these expectations no longer valid. These results suggest that our perceptual systems do indeed form stubborn predictions even from short periods of learning-and more generally suggest that top-down expectations have the potential to help or hinder perceptual inference in bounded minds like ours

    Contributions of cortical feedback to sensory processing in primary visual cortex

    Get PDF
    Closing the structure-function divide is more challenging in the brain than in any other organ (Lichtman and Denk, 2011). For example, in early visual cortex, feedback projections to V1 can be quantified (e.g., Budd, 1998) but the understanding of feedback function is comparatively rudimentary (Muckli and Petro, 2013). Focusing on the function of feedback, we discuss how textbook descriptions mask the complexity of V1 responses, and how feedback and local activity reflects not only sensory processing but internal brain states

    Modelling decision-making biases

    Get PDF
    Biases are a fundamental aspect of everyday life decision-making. A variety of modelling approaches have been suggested to capture decision-making biases. Statistical models are a means to describe the data, but the results are usually interpreted according to a verbal theory. This can lead to an ambiguous interpretation of the data. Mathematical cognitive models of decision-making outline the structure of the decision process with formal assumptions, providing advantages in terms of prediction, simulation, and interpretability compared to statistical models. We compare studies that used both signal detection theory and evidence accumulation models as models of decision-making biases, concluding that the latter provides a more comprehensive account of the decision-making phenomena by including response time behavior. We conclude by reviewing recent studies investigating attention and expectation biases with evidence accumulation models. Previous findings, reporting an exclusive influence of attention on the speed of evidence accumulation and prior probability on starting point, are challenged by novel results suggesting an additional effect of attention on non-decision time and prior probability on drift rate

    Empathy: The Role of Expectations

    Get PDF
    To what extent can we feel what someone else feels? Data from neuroscience suggest that empathy is supported by a simulation process, namely the neural activation of the same or similar regions that subserve the representation of specific states in the observer. However, expectations significantly modulate sensory input, including affective information. For example, expecting painful stimulation can decrease the neural signal and the subjective experience thereof. For an accurate representation of the other person's state, such top-down processes would have to be simulated as well. However, this is only partly possible, because expectations are usually acquired by learning. Therefore, it is important to be aware of possible misleading simulations that lead to misinterpretations of someone's state

    Self-Prioritization Reconsidered : Scrutinizing Three Claims

    Get PDF
    Open Access via the Sage R&P AgreementPeer reviewedPublisher PD

    Evaluating the neurophysiological evidence for predictive processing as a model of perception

    Get PDF
    For many years, the dominant theoretical framework guiding research into the neural origins of perceptual experience has been provided by hierarchical feedforward models, in which sensory inputs are passed through a series of increasingly complex feature detectors. However, the long‐standing orthodoxy of these accounts has recently been challenged by a radically different set of theories that contend that perception arises from a purely inferential process supported by two distinct classes of neurons: those that transmit predictions about sensory states and those that signal sensory information that deviates from those predictions. Although these predictive processing (PP) models have become increasingly influential in cognitive neuroscience, they are also criticized for lacking the empirical support to justify their status. This limited evidence base partly reflects the considerable methodological challenges that are presented when trying to test the unique predictions of these models. However, a confluence of technological and theoretical advances has prompted a recent surge in human and nonhuman neurophysiological research seeking to fill this empirical gap. Here, we will review this new research and evaluate the degree to which its findings support the key claims of PP

    Measuring the World: Olfaction as a Process Model of Perception

    Get PDF
    How much does stimulus input shape perception? The common-sense view is that our perceptions are representations of objects and their features and that the stimulus structures the perceptual object. The problem for this view concerns perceptual biases as responsible for distortions and the subjectivity of perceptual experience. These biases are increasingly studied as constitutive factors of brain processes in recent neuroscience. In neural network models the brain is said to cope with the plethora of sensory information by predicting stimulus regularities on the basis of previous experiences. Drawing on this development, this chapter analyses perceptions as processes. Looking at olfaction as a model system, it argues for the need to abandon a stimulus-centred perspective, where smells are thought of as stable percepts, computationally linked to external objects such as odorous molecules. Perception here is presented as a measure of changing signal ratios in an environment informed by expectancy effects from top-down processes

    The promise of layer-specific neuroimaging for testing predictive coding theories of psychosis

    Get PDF
    Predictive coding potentially provides an explanatory model for understanding the neurocognitive mechanisms of psychosis. It proposes that cognitive processes, such as perception and inference, are implemented by a hierarchical system, with the influence of each level being a function of the estimated precision of beliefs at that level. However, predictive coding models of psychosis are insufficiently constrained—any phenomenon can be explained in multiple ways by postulating different changes to precision at different levels of processing. One reason for the lack of constraint in these models is that the core processes are thought to be implemented by the function of specific cortical layers, and the technology to measure layer specific neural activity in humans has until recently been lacking. As a result, our ability to constrain the models with empirical data has been limited. In this review we provide a brief overview of predictive processing models of psychosis and then describe the potential for newly developed, layer specific neuroimaging techniques to test and thus constrain these models. We conclude by discussing the most promising avenues for this research as well as the technical and conceptual challenges which may limit its application
    corecore