617,647 research outputs found
Exploring the Abilities of 3D Printing and its Viability for Consumption in the Fashion Industry
Abstract
With the ever-evolving state of today’s technology, designers and retailers in the apparel industry are seeking out new technological methods that have the capacity to revolutionize and individualize their brand, as well as meet consumer needs and preferences. An emerging technology is 3D printing, which utilizes computer-aided technology and a variety of filaments to construct an object. Though 3D printing technology offers the ability for rapid prototyping, a condensed supply chain, and a sustainable additive manufacturing process, there is question as to whether or not consumers are ready for 3D printed clothing to enter their wardrobes. In this creative study, the authors designed a 3D printed garment in order to test whether 3D printers could be used to make wearable clothing of similar characteristics to clothing typically made of fabric. A survey was then conducted on the University of Arkansas campus to measure consumer response to the project garment. Three primary factors were measured: prior exposure and interest in 3D printing, general fashion interest, and aesthetic appeal of the project 3D printed garment. Overall perceptions of the project garment as well as further use of 3D printing for the apparel industry were positive. The ability of this study to create a fully 3D printed garment as well as understand consumer response to 3D printed clothing provides insight into this emerging technology. The results warrant further research into its capabilities for fashion and that the fashion industry could move towards adopting this technology on a wider scale in coming years. The results indicate that a major transformation in ready-to-wear style is feasible and beneficial to the apparel industry because of 3D printing.
Keywords: 3D printing, fashion, consumer preference, sustainability, apparel, technolog
Recent advances in 3D printing of biomaterials.
3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing
Electromagnetic analysis and performance comparison of fully 3D-printed antennas
In this work, the possibility of directly prototyping antennas by exploiting additive manufacturing 3D-printing technology is investigated. In particular, the availability of printable filaments with interesting conductive properties allows for printing of even the antenna conductive elements. Three samples of a 2.45 GHz microstrip patch antenna have been 3D-printed by using different approaches and materials, and their performance evaluated and compared. In particular, the same dielectric substrate printed in polylactic acid (PLA) has been adopted in all cases, whilst copper tape and two different conductive filaments have been used to realize the conductive parts of the three antenna samples, respectively. Even if an expected radiation efficiency reduction has been observed for the conductive filament case, the comparative analysis clearly demonstrates that 3D-printing technology can be exploited to design working fully-printed antennas, including the conductive parts
3D printing is a transformative technology in congenital heart disease
Survival in congenital heart disease has steadily improved since 1938, when Dr. Robert Gross successfully ligated for the first time a patent ductus arteriosus in a 7-year-old child. To continue the gains made over the past 80 years, transformative changes with broad impact are needed in management of congenital heart disease. Three-dimensional printing is an emerging technology that is fundamentally affecting patient care, research, trainee education, and interactions among medical teams, patients, and caregivers. This paper first reviews key clinical cases where the technology has affected patient care. It then discusses 3-dimensional printing in trainee education. Thereafter, the role of this technology in communication with multidisciplinary teams, patients, and caregivers is described. Finally, the paper reviews translational technologies on the horizon that promise to take this nascent field even further
3D-printing techniques in a medical setting : a systematic literature review
Background: Three-dimensional (3D) printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. This paper summarizes the literature on surgical 3D-printing applications used on patients, with a focus on reported clinical and economic outcomes.
Methods: Three major literature databases were screened for case series (more than three cases described in the same study) and trials of surgical applications of 3D printing in humans.
Results: 227 surgical papers were analyzed and summarized using an evidence table. The papers described the use of 3D printing for surgical guides, anatomical models, and custom implants. 3D printing is used in multiple surgical domains, such as orthopedics, maxillofacial surgery, cranial surgery, and spinal surgery. In general, the advantages of 3D-printed parts are said to include reduced surgical time, improved medical outcome, and decreased radiation exposure. The costs of printing and additional scans generally increase the overall cost of the procedure.
Conclusion: 3D printing is well integrated in surgical practice and research. Applications vary from anatomical models mainly intended for surgical planning to surgical guides and implants. Our research suggests that there are several advantages to 3D- printed applications, but that further research is needed to determine whether the increased intervention costs can be balanced with the observable advantages of this new technology. There is a need for a formal cost-effectiveness analysis
Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics
Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as "Bridging Platform". This transfer to "Bridging Platform" from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit
Cosmic Sculpture: A new way to visualise the Cosmic Microwave Background
3D printing presents an attractive alternative to visual representation of
physical datasets such as astronomical images that can be used for research,
outreach or teaching purposes, and is especially relevant to people with a
visual disability. We here report the use of 3D printing technology to produce
a representation of the all-sky Cosmic Microwave Background (CMB) intensity
anisotropy maps produced by the Planck mission. The success of this work in
representing key features of the CMB is discussed as is the potential of this
approach for representing other astrophysical data sets. 3D printing such
datasets represents a highly complementary approach to the usual 2D projections
used in teaching and outreach work, and can also form the basis of
undergraduate projects. The CAD files used to produce the models discussed in
this paper are made available.Comment: Accepted for publication in the European Journal of Physic
Recommended from our members
Printing High Viscosity Fluids using Ultrasonic Droplet Generation
A new printing technology based on ultrasonic actuation (~1 MHz) is presented that has the
potential to print high viscosity fluids. In this paper, we describe the print-head’s operating
principles and construction. Acoustic focusing in the nozzles produces high pressure gradients
that help eject the fluid which, under the proper conditions, forms droplets. Two types of models
are presented to attempt to predict print-head behavior over a range of conditions. The first
model borrows from simple fully developed, laminar flows to estimate printing conditions based
on fluid properties, as well as printing pressures. The second model captures the dynamic
behavior of the print-head to estimate cavity resonances that lead to acoustic focusing and
potentially droplet generation. We report on experiments with several types of fluids that
demonstrate the technology’s potential.Mechanical Engineerin
Before the Morning After
This paper presents a wearable biopatch prototype for body surface potential measurement. It combines three key technologies, including mixed-signal system on chip (SoC) technology, inkjet printing technology, and anisotropic conductive adhesive (ACA) bonding technology. An integral part of the biopatch is a low-power low-noise SoC. The SoC contains a tunable analog front end, a successive approximation register analog-to-digital converter, and a reconfigurable digital controller. The electrodes, interconnections, and interposer are implemented by inkjet-printing the silver ink precisely on a flexible substrate. The reliability of printed traces is evaluated by static bending tests. ACA is used to attach the SoC to the printed structures and form the flexible hybrid system. The biopatch prototype is light and thin with a physical size of 16 cm x 16 cm. Measurement results show that low-noise concurrent electrocardiogram signals from eight chest points have been successfully recorded using the implemented biopatch.QC 20130805. Updated from accepted to published.</p
- …
