2,706 research outputs found

    Principles of minimum variance robust adaptive beamforming design

    Get PDF
    Robustness is typically understood as an ability of adaptive beamforming algorithm to achieve high performance in the situations with imperfect, incomplete, or erroneous knowledge about the source, propagation media, and antenna array. It is also desired to achieve high performance with as little as possible prior information. In the last decade, several fruitful principles to minimum variance distortionless response (MVDR) robust adaptive beamforming (RAB) design have been developed and successfully applied to solve a number of problems in a wide range of applications. Such principles of MVDR RAB design are summarized here in a single paper. Prof. Gershman has actively participated in the development and applications of a number of such MVDR RAB design principles

    Robust Adaptive Beamforming for General-Rank Signal Model with Positive Semi-Definite Constraint via POTDC

    Full text link
    The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here we solve the non-convex DC problem rigorously and give arguments suggesting that the solution is globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function whose corresponding optimization problem is non-convex. Then, the optimal value function is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional optimal value function is minimized iteratively via polynomial time DC (POTDC) algorithm.We show that our solution satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions and there is a strong evidence that such solution is also globally optimal. Towards this conclusion, we conjecture that the new optimal value function is a convex function. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.Comment: 29 pages, 7 figures, 2 tables, Submitted to IEEE Trans. Signal Processing on August 201
    • …
    corecore