21,479 research outputs found

    Sleeping Beauty Reconsidered: Conditioning and Reflection in Asynchronous Systems

    Full text link
    A careful analysis of conditioning in the Sleeping Beauty problem is done, using the formal model for reasoning about knowledge and probability developed by Halpern and Tuttle. While the Sleeping Beauty problem has been viewed as revealing problems with conditioning in the presence of imperfect recall, the analysis done here reveals that the problems are not so much due to imperfect recall as to asynchrony. The implications of this analysis for van Fraassen's Reflection Principle and Savage's Sure-Thing Principle are considered.Comment: A preliminary version of this paper appears in Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004). This version will appear in Oxford Studies in Epistemolog

    Intransitivity and Vagueness

    Full text link
    There are many examples in the literature that suggest that indistinguishability is intransitive, despite the fact that the indistinguishability relation is typically taken to be an equivalence relation (and thus transitive). It is shown that if the uncertainty perception and the question of when an agent reports that two things are indistinguishable are both carefully modeled, the problems disappear, and indistinguishability can indeed be taken to be an equivalence relation. Moreover, this model also suggests a logic of vagueness that seems to solve many of the problems related to vagueness discussed in the philosophical literature. In particular, it is shown here how the logic can handle the sorites paradox.Comment: A preliminary version of this paper appears in Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004

    Action Theory Contraction and Minimal Change

    Get PDF
    Proceedings of the 11th Conference on Principles of Knowledge Representation and Reasoning (KR'08)This work is about changing action domain descriptions in dynamic logic. We here revisit the semantics of action theory contraction, giving more robust operators that express minimal change based on a notion of distance between models. We then define syntactical contraction operators and establish their correctness w.r.t. our semantics. Finally we show that our operators satisfy the PDL-counterpart of the standard postulates for theory change adopted in the literature

    A Parameterized Complexity View on Description Logic Reasoning

    Get PDF
    Description logics are knowledge representation languages that have been designed to strike a balance between expressivity and computational tractability. Many different description logics have been developed, and numerous computational problems for these logics have been studied for their computational complexity. However, essentially all complexity analyses of reasoning problems for description logics use the one-dimensional framework of classical complexity theory. The multi-dimensional framework of parameterized complexity theory is able to provide a much more detailed image of the complexity of reasoning problems. In this paper we argue that the framework of parameterized complexity has a lot to offer for the complexity analysis of description logic reasoning problems---when one takes a progressive and forward-looking view on parameterized complexity tools. We substantiate our argument by means of three case studies. The first case study is about the problem of concept satisfiability for the logic ALC with respect to nearly acyclic TBoxes. The second case study concerns concept satisfiability for ALC concepts parameterized by the number of occurrences of union operators and the number of occurrences of full existential quantification. The third case study offers a critical look at data complexity results from a parameterized complexity point of view. These three case studies are representative for the wide range of uses for parameterized complexity methods for description logic problems.Comment: To appear in the Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018

    Hunting for Tractable Languages for Judgment Aggregation

    Get PDF
    Judgment aggregation is a general framework for collective decision making that can be used to model many different settings. Due to its general nature, the worst case complexity of essentially all relevant problems in this framework is very high. However, these intractability results are mainly due to the fact that the language to represent the aggregation domain is overly expressive. We initiate an investigation of representation languages for judgment aggregation that strike a balance between (1) being limited enough to yield computational tractability results and (2) being expressive enough to model relevant applications. In particular, we consider the languages of Krom formulas, (definite) Horn formulas, and Boolean circuits in decomposable negation normal form (DNNF). We illustrate the use of the positive complexity results that we obtain for these languages with a concrete application: voting on how to spend a budget (i.e., participatory budgeting).Comment: To appear in the Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018
    • …
    corecore