1,584 research outputs found

    Linear tubular switched reluctance motor for heart assistance circulatory: Analytical and finite element modeling

    Get PDF
    A linear tubular switched reluctance motor is presented. This actuator is devoted to be used as a left ventricular assist device (LVAD). In order to avoid thrombosis, this actuator includes pump and valve functions. By using a St. Jude Medical mechanical valve inside the tubular mover, a pulsatile flow is created in the descending aorta. A linear model of a basic pattern of the actuator based on a reluctance network is developed. Then, a two dimensions finite element method analysis is performed in order to check the analytically calculated performances. Relying on these both models, specific requirements for the design of this kind of motor are discussed

    Electromagnetic fields and interactions in 3D cylindrical structures : modeling and application

    Get PDF
    The demand for more efficient and compact actuation systems results in a search for new electromagnetic actuator configurations. To obtain actuators that meet these challenging specifications, accurate modeling of the electromagnetic fields is often a prerequisite. To date, analytical modeling techniques are widely used to predict electromagnetic fields in classical rotary and linear machines represented in two dimensional coordinate systems. This thesis presents the extension of an analytical modeling technique to predict the 3D field distribution in new cylindrical actuator configurations. One specific technique that is used to analyze and design electromagnetic devices is based on Fourier series to describe sources and the resultingmagnetic fields. In this research, the harmonic modeling technique is extended to describe electromagnetic fields due to presence of permanent magnets in regular and irregular shaped 3D cylindrical structures. The researched modeling technique can be applied to current-free cylindrical problems exhibiting periodicity or a soft-magnetic boundary in the axial direction. The cylindrical structure can posses either circumferential slots, axial slots or rectangular cavities. The assignment and a method to solve the various boundary conditions are discussed in a generic manner to enable model application to a wide range of 3D cylindrical structures. The magnetic field solutions are provided, and the model implementation is presented in matrix form. Model validation is presented by means of a comparison of the magnetic fields in a cylindrical structure with a rectangular cavity calculated using the analytical model and a finite element model. To calculate the magnetic interactions, e.g., attraction and cogging forces due to permanent magnets, the Maxwell stress tensor is analytically evaluated. The harmonic magnetic field solution is used in this evaluation resulting in compact force equations describing the 3D force components between concentric cylinders

    2-D Equivalent finite element model of quadratic linear electromagnetic actuator

    Get PDF
    The purpose of this paper is to present a 2-D equivalent finite element model of a quadratic linear electromagnetic actuator that can save space and power as it does not employ an energy conversion system. A 2-D model, while being fairly accurate, is preferable to a 3-D finite element analysis for the design and analysis of a quadratic linear electromagnetic actuator as it requires significantly lower computing resources and results in faster calculations. We calculate the effective coil length for the equivalent 2-D finite element model and validate the accuracy of this model with experimental data

    A rotary-linear switched reluctance motor

    Get PDF
    Author name used in this publication: J. F. PanAuthor name used in this publication: N. C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Development of a Compact Piezoworm Actuator For Mr Guided Medical Procedures

    Get PDF
    In this research, a novel piezoelectric actuator was developed to operate safely inside the magnetic resonance imaging (MRI) machine. The actuator based on novel design that generates linear and rotary motion simultaneously for higher needle insertion accuracy. One of the research main objectives is to aid in the selection of suitable materials for actuators used in this challenging environment. Usually only nonmagnetic materials are used in this extremely high magnetic environment. These materials are classified as MRI compatible materials and are selected to avoid hazardous conditions and image quality degradation. But unfortunately many inert materials to the magnetic field do not possess desirable mechanical properties in terms of hardness, stiffness and strength and much of the available data for MRI compatible materials are scattered throughout the literature and often too device specific . Furthermore, the fact that significant heating is experienced by some of these devices due to the scanner’s variable magnetic fields makes it difficult to draw general conclusions to support the choice of suitable material and typically these choices are based on a trial-and-error with extensive time required for prototype development and MRI testing of such devices. This research provides a quantitative comparison of several engineering materials in the MRI environment and comparison to theoretical behavior which should aid designers/engineers to estimate the MRI compatible material performance before the expensive step of construction and testing. This work focuses specifically on the effects in the MRI due to the material susceptibility, namely forces, torques, image artifacts and induced heating

    Multi-level contactless motion system

    Get PDF

    A Comprehensive Review on Regenerative Shock Absorber Systems

    Get PDF

    Overview of 2-Degree-of-Freedom Rotary-Linear Motors Focusing on Coupling Effect

    Get PDF

    Design and analysis of a novel X-Y table

    Get PDF
    Author name used in this publication: J. F. PanAuthor name used in this publication: N. C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Lightweight positioning : design and optimization of an actuator with two controlled degrees of freedom

    Get PDF
    It is known that internal vibrations decrease the performance characteristics and life time of mechanisms, and in some cases they even may lead to mechanical failures. In motion systems used in precision technology (wafer scanners, scanners, pick-and-place machines for production of PCBs, wire-bonders etc.), internal vibrations limit the performance parameters. The vibrations are still a challenge for the generally accepted design approach at present time, which is heading towards higher system accuracy, speed and throughput. Currently, the design approach to precision positioning applications places the dominant vibration frequencies of the mechanical parts several times higher than the required control bandwidth. However, these high mechanical frequencies are reached by constructing the mechanical parts with high stiffness, often at the cost of relatively high mass. To eliminate the negative consequences of the classical methodology, another design philosophy is used in this thesis. A three-disciplinary lightweight positioning approach (control, mechanics and electromechanics) focuses on mass reduction of the moving parts of motion systems. For this purpose, a principle based on over-actuation is used, which allows designing a lighter overall kinematical structure (force-path). In order to evaluate this approach on a general level, benchmarks for classical and lightweight positioning systems are proposed, namely, a so-called stiff beam system and a flexible beam system. The main focus of the thesis is on the design and optimization of a novel Lorentz force actuator for a lightweight positioning system that can also be applied in other precision technology applications. The objective is to reach the maximum mass reduction of the flexible beam system. In order to evaluate and design the novel actuator, a comprehensive static electromagnetic analysis of the actuator is elaborated. The resulting analytical model is based on a magnetic equivalent circuit, which has been identified by means of preliminary finite element calculations. The analytical model plays an essential role in the complete design. It is later used for the optimal dimensioning of the actuator for required performance specifications. Then, a numerical finite element model is built and the results are used to evaluate the accuracy of the analytical model and to identify parasitic forces and torques of the actuator. Another important aspect that determines the operating conditions is the thermal behavior of the actuator. It is also described analytically by a thermal lumped parameter model. The suggested description of the heat transfer captures the static as well as the dynamic behavior. To determine the optimal dimensions of the actuator an optimization approach, which uses the magnetic equivalent circuit and the thermal analytical model, is proposed. In terms of nonlinear programming, the problem statement consists of finding the dimensions of the actuator with minimal mass, where given force and torque are used as constraints. Because of the nonlinear nature of the problem the optimal solution is found numerically. The resulting optimal actuator incorporating two degrees of freedom (DoF) has 22.2% less mass than two equivalent 1-DoF actuators. It may be concluded, based on simulation and measurement results, that the proposed actuator can be analyzed with sufficient accuracy by the presented methods. The invented short-stroke actuator uniquely combines two controlled degrees of freedom: translational and rotational. This combination ensures that the mass of the actuators used in the flexible beam system has been reduced compared to that in the stiff beam system. The actuators support the flexible beam system in a way that introduces less disturbances. Meanwhile, the controllability of higher order vibration modes and, consequently, the global performance are improved. Two lightweight positioning systems were built, one with three 1-DoF actuators and the other with two novel Lorentz force actuators. In both setups the flexible beam has its mass reduced to 38.6% of that of the stiff beam. The total mass of the actuators in both cases is almost the same, but the setup with the innovative actuators allows to control the beam with two forces and two torques, while the setup with three 1-DoF actuators produces only three controlled force
    corecore