725,069 research outputs found
PRISE2: software for designing sequence-selective PCR primers and probes.
BackgroundPRISE2 is a new software tool for designing sequence-selective PCR primers and probes. To achieve high level of selectivity, PRISE2 allows the user to specify a collection of target sequences that the primers are supposed to amplify, as well as non-target sequences that should not be amplified. The program emphasizes primer selectivity on the 3' end, which is crucial for selective amplification of conserved sequences such as rRNA genes. In PRISE2, users can specify desired properties of primers, including length, GC content, and others. They can interactively manipulate the list of candidate primers, to choose primer pairs that are best suited for their needs. A similar process is used to add probes to selected primer pairs. More advanced features include, for example, the capability to define a custom mismatch penalty function. PRISE2 is equipped with a graphical, user-friendly interface, and it runs on Windows, Macintosh or Linux machines.ResultsPRISE2 has been tested on two very similar strains of the fungus Dactylella oviparasitica, and it was able to create highly selective primers and probes for each of them, demonstrating the ability to create useful sequence-selective assays.ConclusionsPRISE2 is a user-friendly, interactive software package that can be used to design high-quality selective primers for PCR experiments. In addition to choosing primers, users have an option to add a probe to any selected primer pair, enabling design of Taqman and other primer-probe based assays. PRISE2 can also be used to design probes for FISH and other hybridization-based assays
MCMC-ODPR : primer design optimization using Markov Chain Monte Carlo sampling
Background
Next generation sequencing technologies often require numerous primer designs that require good target coverage that can be financially costly. We aimed to develop a system that would implement primer reuse to design degenerate primers that could be designed around SNPs, thus find the fewest necessary primers and the lowest cost whilst maintaining an acceptable coverage and provide a cost effective solution. We have implemented Metropolis-Hastings Markov Chain Monte Carlo for optimizing primer reuse. We call it the Markov Chain Monte Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR) algorithm.
Results
After repeating the program 1020 times to assess the variance, an average of 17.14% fewer primers were found to be necessary using MCMC-ODPR for an equivalent coverage without implementing primer reuse. The algorithm was able to reuse primers up to five times. We compared MCMC-ODPR with single sequence primer design programs Primer3 and Primer-BLAST and achieved a lower primer cost per amplicon base covered of 0.21 and 0.19 and 0.18 primer nucleotides on three separate gene sequences, respectively. With multiple sequences, MCMC-ODPR achieved a lower cost per base covered of 0.19 than programs BatchPrimer3 and PAMPS, which achieved 0.25 and 0.64 primer nucleotides, respectively.
Conclusions
MCMC-ODPR is a useful tool for designing primers at various melting temperatures at good target coverage. By combining degeneracy with optimal primer reuse the user may increase coverage of sequences amplified by the designed primers at significantly lower costs. Our analyses showed that overall MCMC-ODPR outperformed the other primer-design programs in our study in terms of cost per covered base
Microsatellite primers for red drum (Sciaenops ocellatus)
In this note, we document polymerase-chain-reaction (PCR) primer pairs for 101 nuclear-encoded microsatellites
designed and developed from a genomic library for red drum (Sciaenops ocellatus). Details of the genomic library construction, the sequencing of positive clones, primer design, and PCR protocols may be found in Karlsson et al. (2008). The 101 microsatellites (GENBA NK Accession Numbers
EU015882-EU015982) were amplified successfully and used to genotype 24 red drum obtained from Galveston Bay, Texas (Table 1). A total of 69 of the microsatellites had an uninterrupted (perfect) dinucleotide motif, and 30 had an imperfect dinucleotide motif; one microsatellite had an
imperfect tetranucleotide motif, and one had an imperfect and compound motif (Table 1 ). Sizes of the cloned alleles ranged from 84 to 252 base pairs. A ‘blast’ search of the GENBANK database indicated that all of the primers and the cloned alleles were unique (i.e., not duplicated)
White spot syndrome virus (WSSV) transmission risk through infected cooked shrimp products assessed by polymerase chain reaction (PCR) and bio-inoculation studies
The aim of the study was to evaluate the resistance of white spot syndrome virus (WSSV) in shrimps (Penaeus monodon) to the process of cooking. The cooking was carried out at 1000C six different durations 5, 10, 15, 20, 25 and 30 min. The presence of WSSV was tested by single step and nested polymerase chain reaction (PCR). In the single step PCR, the primers 1s5 & 1a16 and IK1 & IK2 were used. While in the nested PCR, primers IK1 &IK2 – IK3 & IK4 were used for the detection of WSSV. WSSV was detected in the single step PCR with the primers 1s5 and 1a16 and the nested PCR with the primers IK1 and IK2 – IK3 & IK4 from the cooked shrimp samples. The cooked shrimps, which gave positive results for WSSV by PCR, were further confirmed for the viability of WSSV by conducting the bio-inoculation studies. Mortality (100%) was observed within 123 h of intra-muscular post injection (P.I) into the live healthy WSSV-free shrimps (P. monodon). These results show that the WSSV survive the cooking process and even infected cooked shrimp products may pose a transmission risk for WSSV to the native shrimp farming systems
Ten polymorphic microsatellite primers in the tropical tree caimito, Chrysophyllum cainito (Sapotaceae).
UnlabelledPremise of the studyWe developed microsatellite primers for the tropical tree Chrysophyllum cainito (Sapotaceae) to determine the native range of the species, investigate the origin of cultivated populations, and examine the partitioning of genetic diversity in wild and cultivated populations. •Methods and resultsWe developed 10 polymorphic primers from C. cainito genomic DNA libraries enriched for di-, tri-, and tetranucleotide repeat motifs. The loci amplified were polymorphic in samples collected from Jamaica and Panama. The number of alleles per locus ranged from two to 10 and three to 12, while observed heterozygosities ranged from 0.074 to 0.704 and 0.407 to 0.852 in Jamaica and Panama, respectively. •ConclusionsThe microsatellite primers will be useful in future population genetic studies as well as those aimed at understanding the geographic origin(s) of wild and cultivated populations
High-throughput sequencing of 16S rRNA gene amplicons : effects of extraction procedure, primer length and annealing temperature
The analysis of 16S-rDNA sequences to assess the bacterial community composition of a sample is a widely used technique that has increased with the advent of high throughput sequencing. Although considerable effort has been devoted to identifying the most informative region of the 16S gene and the optimal informatics procedures to process the data, little attention has been paid to the PCR step, in particular annealing temperature and primer length. To address this, amplicons derived from 16S-rDNA were generated from chicken caecal content DNA using different annealing temperatures, primers and different DNA extraction procedures. The amplicons were pyrosequenced to determine the optimal protocols for capture of maximum bacterial diversity from a chicken caecal sample. Even at very low annealing temperatures there was little effect on the community structure, although the abundance of some OTUs such as Bifidobacterium increased. Using shorter primers did not reveal any novel OTUs but did change the community profile obtained. Mechanical disruption of the sample by bead beating had a significant effect on the results obtained, as did repeated freezing and thawing. In conclusion, existing primers and standard annealing temperatures captured as much diversity as lower annealing temperatures and shorter primers
Family-specific degenerate primer design: a tool to design consensus degenerated oligonucleotides
Designing degenerate PCR primers for templates of unknown nucleotide sequence may be a very difficult task. In this paper, we present a new method to design degenerate primers, implemented in family-specific degenerate primer design (FAS-DPD) computer software, for which the starting point is a multiple alignment of related amino acids or nucleotide sequences. To assess their efficiency, four different genome collections were used, covering a wide range of genomic lengths: Arenavirus ( nucleotides), Baculovirus ( to bp), Lactobacillus sp. ( to bp), and Pseudomonas sp. ( to bp). In each case, FAS-DPD designed primers were tested computationally to measure specificity. Designed primers for Arenavirus and Baculovirus were tested experimentally. The method presented here is useful for designing degenerate primers on collections of related protein sequences, allowing detection of new family members.Fil: Iserte, Javier Alonso. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular. Área de Virosis Emergentes y Zoonótica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Stephan, Betina Inés. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular. Área de Virosis Emergentes y Zoonótica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goñi, Sandra Elizabeth. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular. Área de Virosis Emergentes y Zoonótica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Borio, Cristina Silvia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular. Área de Virosis Emergentes y Zoonótica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular. Área Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lozano, Mario Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular. Área de Virosis Emergentes y Zoonótica; Argentin
Search for alternate hosts of the coconut Cape Saint Paul Wilt Disease pathogen
Lethal Yellowing disease locally called Cape Saint Paul wilt disease (CSPWD) is the bane of the coconut industry in Ghana and is caused by a phytoplasma. In Ghana, there are areas where the disease has re-infected re-plantings long after decimating all the palms in the area. This brings to the fore the possibility of alternate hosts in the spread of the disease because the pathogen is an obligate parasite. In this work, a number of plants were screened for their host status to the CSPWD pathogen. The presence of phytoplasmas in these plants was tested by polymerase chain reaction analysis using universal phytoplasma primers P1/P7 and CSPWD-specific primers G813/GAKSR. Although Desmodium adscendens tested positive to the CSPWD-specific primers, cloning and sequencing did not confirm it as an alternate host. The identification of alternate hosts will help us to evolve sound control strategies against the spread of the disease. (Résumé d'auteur
- …
