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Abstract 

Background 

Next generation sequencing technologies often require numerous primer designs that require 

good target coverage that can be financially costly. We aimed to develop a system that would 

implement primer reuse to design degenerate primers that could be designed around SNPs, 

thus find the fewest necessary primers and the lowest cost whilst maintaining an acceptable 

coverage and provide a cost effective solution. We have implemented Metropolis-Hastings 

Markov Chain Monte Carlo for optimizing primer reuse. We call it the Markov Chain Monte 

Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR) algorithm. 

Results 

After repeating the program 1020 times to assess the variance, an average of 17.14% fewer 

primers were found to be necessary using MCMC-ODPR for an equivalent coverage without 

implementing primer reuse. The algorithm was able to reuse primers up to five times. We 

compared MCMC-ODPR with single sequence primer design programs Primer3 and Primer-

BLAST and achieved a lower primer cost per amplicon base covered of 0.21 and 0.19 and 

0.18 primer nucleotides on three separate gene sequences, respectively. With multiple 

sequences, MCMC-ODPR achieved a lower cost per base covered of 0.19 than programs 

BatchPrimer3 and PAMPS, which achieved 0.25 and 0.64 primer nucleotides, respectively. 



Conclusions 

MCMC-ODPR is a useful tool for designing primers at various melting temperatures at good 

target coverage. By combining degeneracy with optimal primer reuse the user may increase 

coverage of sequences amplified by the designed primers at significantly lower costs. Our 

analyses showed that overall MCMC-ODPR outperformed the other primer-design programs 

in our study in terms of cost per covered base. 

Background 

Next generation sequencing technology has led to the frequent application of deep 

sequencing projects, and the use of systems that require a large number of oligonuceotide 

primers for PCR. The design of a high number of primers is a challenge logistically both in 

terms of achieving good coverage of target regions and in terms of cost. Although there are a 

number of primer design programs available, utilizing them for high throughput design can 

be difficult and financially costly. We aimed to produce a system in which a large number of 

primers could be designed cost effectively by using the fewest necessary primers, hence the 

lowest cost, at multiple priming sites where possible whilst maintaining an acceptable level of 

coverage, and avoiding degeneracy in amplicon targets which overlap in the same regions. 

In designing our program we compared our approaches and performance with several other 

available programs; Primer3 [1], Batchprimer3 [2], Primer-BLAST [3] and PAMPS [4]. The 

core algorithm for the first three of these programs is that of Primer3. The Primer3 algorithm 

takes into account the primer size, melting temperature (Tm), GC content, and concentration 

of monovalent and divalent cations within the PCR reaction mixture, a selection of salt 

correction formulae and different parameters for simulating the thermodynamics of primer 

hybridization. Potential primers are then checked by using a mispriming repeat library from 

the human, rodent or Drosophila genomes, allowing interspersed repeats or other sequence 

regions to be avoided as primer annealing locations. Primer-BLAST utilizes the Primer3 

algorithm and the BLAST local alignment search tool [5] to ensure only unique primer pairs 

are selected, thus preventing primers becoming designed around undesired targets such as 

introns. These two programs output a range of primer pair possibilities for single DNA 

sequences, but they are not designed for high throughput primer design. The need for high 

throughput primer design was recognized by You et al. [2], who produced BatchPrimer3 in 

which multiple sequences can be input for primer selection, but only one primer pair per 

input sequence is produced. 

Minimizing the cost of a primer design can be achieved by (i) designing degenerate primers 

able to anneal to a number of related target sequences and (ii) implementing primer reuse 

utilizing primers that bind to conserved loci that are repeated. Although degeneracy allows 

for amplification of greater numbers of related sequences, the more degenerate primers are 

the less specific amplicons will be. Therefore achieving an optimal degree of degeneracy is 

important to obtaining a suitable trade-off between the number of related sequences amplified 

and the specificity of these amplicons. A number of variants exist for tackling this problem 

and achieving a good trade-off for the specificity and sensitivity. The Maximum Coverage 

Degenerate Primer Design (MCDPD) approach as used in HYDEN [6] tries to identify a 

primer of length l and a maximum degeneracy dmax that covers a maximum number of 

sequences, each of length l. The Minimum Degeneracy Degenerate Primer Design (MDDPD) 

attempts to find a primer of length l and a minimum degeneracy dmin that can cover all input 



sequences with a length equal to or greater than l. The Minimum Primers Degenerate Primer 

Design (MPDPD) attempts to find the fewest number of primers of length l and a maximum 

degeneracy of dmax for a set of sequences, so that each sequence is covered by at least one 

primer. Whereas this approach has the constraint that all input sequences have the same 

length as the primers and may be inadequate in practice, the Multiple Degenerate Primer 

Design (MDPD) allows the input sequences to have different lengths of greater than lmin and 

attempts to identify primers of length at least lmin and degeneracy dmax, allowing each 

sequence to be covered by at least one primer. This was the approach taken by MIPS [7] and 

PAMPS [4]. PAMPS is a heuristic, high throughput algorithm which designs degenerate 

primers through a process of consecutive ad hoc pairwise alignments [4]. This program has 

been shown to outperform other degenerate primer design systems such as HYDEN and 

MIPS in terms of computational time. 

Algorithms for implementing primer reuse have also been developed: Doi and Imai have 

described a heuristic algorithm for greedy primer design within multiplex PCR, which 

attempts to minimize the cost of primers required for multiplex PCR and SNP genotyping [8]. 

MuPlex is another heuristic algorithm designed for multiplex PCR, which uses a graph based 

approach to assign the largest number of non-conflicting primers into the fewest ‘cliques’ that 

can be assigned to multiplex PCR tubes [9]. Lui and Carson have utilized a simulated 

annealing optimization to maximize primer reuse, which exhaustively searches primer space 

and aims to converge upon the optimal cost solution [10]. Despite individual cost benefits 

from either optimization of primer reuse, or automated design of degenerate primers, 

combining the two techniques is likely to offer additional cost advantages. 

Optimizing primer design to make use of degeneracy and multiplexing has been referred to as 

the Multiple Degenerate Primer Selection Problem (MDPSP), and variants have been shown 

to be NP-complete. Previous approaches to MDPSP, such as those undertaken by Balla et al 

[11] have shown that primer coverage and cost can be improved through approximate 

(heuristic) greedy algorithms. Jabado et al. provide a heuristic algorithm for degeneracy, 

Greene SCPrimer [12]. In this method phylogenetic trees are constructed from multiple 

sequence alignments to identify candidate primers, which are used by a greedy set covering 

problem (SCP) solving algorithm to determine the minimum set of degenerate primers that 

may amplify all members of the alignment, so combining degeneracy with primer reuse. 

Although heuristic approaches generally outperform global optimizations in computation 

time, the reverse can potentially be true in quality of output. Given that optimization of large 

multiplexed primer design is not generally time-critical, a global optimization approach 

seems appropriate. 

In order to improve on greedy approaches to MDPSP we present here an algorithm that takes 

a Markov Chain Monte Carlo (MCMC) approach, which allows sampling through primer 

parameter space using a probability distribution of acceptance of iterative primer designs. 

Primers are weighted according to their degree of reuse provided their degeneracy is kept 

below a user-defined threshold. We have implemented a Metropolis-Hastings algorithm, in 

which new proposals (e.g. the cost of a primer design) are accepted if they provide a more 

optimal solution to the current proposal, with the system tending to revert probabilistically, to 

the current state if the new proposal is more costly. We call the algorithm the Markov Chain 

Monte Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR) algorithm. We show that 

the MCMC-ODPR program outperforms Primer3, Primer-BLAST, BatchPrimer3, and 

PAMPS in terms of cost and in terms of sequence coverage. 



Implementation 

The main goal of MCMC-ODPR is to optimize the cost of a design by introducing 

degeneracy into primers and stochastically searching the cost landscape. The goal is to find 

the fewest necessary primers (lowest cost), whilst maintaining an acceptable coverage 

throughout all input target sequences. We define the cost as the number of nucleotides 

present in a set of primers identified in a sequence set and define the coverage as the number 

of base pairs within the sequences that will be amplified by the primers identified for the set. 

We summarize the two aforementioned statistics as cost per covered bases which is defined 

as cost / coverage. For a given set of target sequences S, and a set of primer design constraints 

C, there are typically either 0 or very many possible designs D, each constituting a set of 

overlapping primer pairs, which can potentially amplify S in a multiplexed PCR reaction. 

Typical design constraints include the melting temperature, Tm; the maximum and minimum 

primer pair length, Lmax, and Lmin; and the maximal desired degeneracy, dmax. We aim to 

optimize D|(S, C). The full list of constraints that the primers belonging to the optimized 

design must satisfy are listed below: 

1. The GC content of the primers must be taken into account. Due to the stronger 

intermolecular forces between the guanine and cytosine nucleotides, Tm is highly 

dependent on this, which in turn has implications for how well primers hybridize to 

template sequences and for specificity of amplicons. 

2. Primers should be minimally degenerate with a limited number of degenerate nucleotides 

per primer. 

3. The forward and reverse pair of primers must not allow amplification of a target that 

exceeds the desired target length. 

4. The primers should ideally be used multiple times, to keep the financial cost down. 

However, primer pairs should also be unique, otherwise the specificity of the targets will 

be reduced. 

5. Primers should not be designed that will hybridize to the target between a forward and 

reverse primer of an already established amplicon, unless this will lower the cost of the 

overall design. 

6. Primers should not be designed which are complementary to other primers, i.e. form 

dimers with other primers. 

7. Primers should not be designed which are likely to self-hybridize and form hairpin 

structures. 

For a primer i of length li we assume: 

cost i il  (1) 

Therefore, for a primer set design D, targeting sequences S that contain k distinct primers we 

assume: 

cost
k

D ii l
l

  
(2) 

We attempt to minimize costD by allowing degeneracy in i and by sampling possible designs 

within design constraints using an MCMC sampler. Greedy approaches to minimizing costD 



in a primer set design for multiple target sequences will result in a final costD which depends 

in part on which of the target sequences is chosen first, to begin the design, and on which 

position within each sequence the primer design is begun for that sequence. We sample from 

uniform prior distributions on both of these parameters. We also allow our sampler to vary 

the position of individual primers within the design, and the degeneracy of individual bases 

within each primer within the chosen degeneracy limit, both also with uniform priors. Our 

sampler allows each of these parameters to vary, initially preferring to sample from the 

earlier of the four parameters and increasingly preferring to sample from the latter. 

Program input 

For ease of use inputs to MCMC-ODPR are specified in a simple text document, which is 

then read into the program, Table 1. The input data to the program are three sets of nucleotide 

sequences in FASTA format. The first FASTA file contains genomic background sequences, 

which could be the whole genome, a large EST or GSS set, and will be searched using the 

BLAST local alignment search tool to asses the redundancy of possible primers and the 

uniqueness of forward and reverse primer pairs. The two remaining files provide MCMC-

ODPR with the sequences to amplify and with SNP marker information respectively. The 

‘sequences to amplify’ file contains a representative gene sequences (consensus sequence) for 

each entry while the SNP marker information file contains the same sequences with all 

collated SNPs for that gene, known as the exceptions sequences. Depending on the 

availability of SNP information, not all consensus sequences need be present in the 

exceptions sequence file, however. A small program has been included in the MCMC-ODPR 

package, EXCEPTIONS_GENERATOR, which on taking a FASTA file of all variants of 

sequences of genes to be amplified, will automatically generate the consensus and exceptions 

files. In the absence of SNP information, no exceptions file is necessary. 



Table 1 Input file parameters for MCMC-ODPR 

Input parameter Default value 

Genome file for BLAST searching hv_mRNA_PUT.fas 

Max degeneracy (base pairs) 3 

Minumum melting temperature (centigrade) 50 

Maximum melting temperature (centigrade) 60 

Minimum amplicon length (base pairs) 50 

Maximum amplicon length (base pairs) 250 

Initial overlap (base pairs) 0 

Number of optimisations 10000 

Maximum gap between sequences (base pairs) 10 

Save interim optimizations? 0 

Verbose output? 0 

Cost tolerance 0 

Output file name mcmc_odpr_results.out 

Restart from previous run? 0 

Probability of removing redundant primer pairs 0 

Proportion of iterations to be considered as `early' 0 

Weight greedy methods according to optimization? 1 

Remove non-reusable primers from initial design? 0 

Proportion of failed weight check proposals to accept (heating) 0.2 

The parameters that may be input by the user into the MCMC-ODPR parameter file are in the 

left-most column. If the user chooses not to enter one of these parameters, then the default 

value on the right-most column will be used. 



MCMC-ODPR primer preparation stages 

MCMC-ODPR initially goes through three stages of valid primer enumeration. Firstly, it 

searches all input consensus sequences for all possible primers meeting design constraints, 

whilst iterating through the input range of melting temperatures. At the second stage primer-

dimers are removed and the redundancy of primers and uniqueness of primer pairs is 

assessed. Primers that have the propensity to self hybridize are subsequently removed. 

Primers are weighted according to their redundancy, with more highly weighted primers 

being preferred later in the optimization. In the third stage, for all remaining accepted 

primers, MCMC-ODPR recursively generates all possible degenerate primers to the input 

target level of degeneracy and tests whether they match other primers in the data set, to 

reassess their redundancy. In order to restrict a lack of specificity in the targets of the 

designed primers, the degree of degeneracy and redundancy must be limited, however. In the 

case of redundancy a high cut-off value allowing large redundancy values could favor 

primers being designed from low complexity or microsatellite regions of the target genes. A 

cut-off of three S or W degenerate bases yielding 2
3
 potential priming sites for degeneracy 

and a maximum redundancy of 10 are the default values in MCMC-ODPR; these can be 

changed by the user. After these initial stages, the Metropolis Hastings MCMC optimization 

begins. 

MCMC-ODPR degenerate primer design 

When designing degenerate primers, it is important to maintain a degree of specificity within 

the primers by limiting the number of degenerate nucleotides per primer, otherwise designed 

primers will likely hybridize to numerous loci on the target sequence; generating highly 

unspecific amplicons and reducing the scope for primer reuse and cost effectiveness. 

Furthermore, if primer Tm is constrained, the possible combinations of degenerate loci that 

are permitted within a design must also be constrained to avoid generation of degenerate 

primers with variant Tm. For instance, a primer having one degenerate position allowing an A 

or a C (IUPAC code M) would generate two primers with different Tm values, which is 

inappropriate if primers are being designed for a specific Tm. For our purposes, therefore, the 

degree of possible degeneracy per primer is limited with primers having lower degeneracy, 

yet higher redundancy being more highly weighted for each proposal. Degenerate 

oligonucleotides which are permitted in our primer designs are W (bases A and T) and S 

(bases G and C). Take P to be the set of all possible primers extracted from the candidate 

gene set. A degeneracy threshold α is implemented and represents the maximum proportion 

of degenerate nucleotides within the primer. MCMC-ODPR then iteratively generalizes 

through all possible degenerate variations of the primers within P, whilst not contravening α. 

This exhaustive set is then searched during the greedy MCMC algorithms described below. 

MCMC-ODPR Greedy primer selection method 

The primer cost optimization itself consists of three different greedy proposal generating 

methods that are progressively applied more frequently in succession. The first covers all 

input gene sequences by randomly selecting genes progressively and then picks primers from 

a random seeded position within the sequence, building amplicon targets from that seed in a 

periodicity which matches a user defined size range by randomly selecting amplicon sizes 

within that range to look for subsequent primer positions. This process is repeated, with the 

subsequent primer set being selected if the global cost is lowered. In this process primer loci 

may be ‘swapped’, with more reusable primers being accepted over less reusable primers. 



The second method (per-gene refinement) repeats the seeding process for each gene 

individually having accepted the global primer arrangement from the first step. The final 

greedy method adjusts final primer positions by repositioning each primer randomly. Again, 

if each primer adjustment results in a cost reduction, the adjustment is accepted. To allow the 

algorithm to converge upon a solution, it is desirable to allow a transition from optimizations 

that greatly affect a design to more ‘fine tuning’ optimizations. Therefore these methods may 

be weighted according to how many iterations within the optimization have passed: with the 

first greedy method being weighted for within the first third of all iterations, the second 

within the second third of optimizations and the third within the last third. These methods are 

stochastically chosen, however, hence all three greedy methods can still be chosen randomly 

by the algorithm at any time, allowing primer set design space to be sampled in different 

ways. 

Proportion of accepted failed proposals and proportions of ‘hot’ chains 

The primer cost sample space may be visualized as a landscape, with various local cost 

minima and the global minima. The Metropolis-Hastings algorithm takes a solution proposal 

and then assesses whether this current proposal is more optimal than previous proposals. If 

this is the case, the Markov chain is allowed to continue stepping through the landscape. 

Otherwise the algorithm reverts back to a previous state. An initial random cost, C is 

proposed. At each iteration the cost associated with the new proposal, C’ is compared to C, 

with δS = C’-C. Unless δS is negative, the proposal is accepted with a probability 

proportional to e
-δSH

; where the heating H is a user input variable (see Table 1). The heating 

variable is defined as the proportion of primers that have failed their redundancy/weight 

check proposals that may be accepted, allowing chains to escape local minima and allowing 

efficient convergence. A variable specifying the proportion of optimizations to consider as 

‘young’ is also input to allow convergence to be estimated in mature chains, as an alternative 

to specifying a fixed number of iterations. 

Tuning parameters and convergence 

The parameter INITIAL_OVERLAP allows the user to build ‘slack’ into the initial proposal, 

allowing for a more extensive exploration of the cost landscape before the proposed solution 

tends towards being trapped in a local optimum. If larger values of INITIAL_OVERLAP are 

used, the initial proposal becomes more expensive because more primer pairs are used to 

cover the target sequences, but by initially proposing a more expensive design there is more 

scope for the algorithm to explore the cost landscape by changing the positions of individual 

primer pairs, whilst still satisfying the maximum amplicon length constraint. The parameter 

PROB_REMOVE_REDUNDANT constrains the rate at which this initial slack is removed 

from the design in cases where two neighboring primer pairs have changed position to the 

extent that the pairs become nested. 

Currently the algorithm only aims to optimize cost, and not coverage. Because of this, as the 

design begins to approach an optimum cost for a given coverage, it will then likely allow 

coverage to reduce in order to further minimize the cost by removing one or more primer 

pairs from the design, for instance, and leaving the corresponding sequence uncovered. 



MCMC-ODPR output 

The output of MCMC-ODPR is a single text file, containing an enumeration of all primers 

designed at each input Tm, the selected degenerate primers, the number of covered bases and 

the final cost in nucleotides. 

Results and discussion 

MCMC-ODPR overall performance 

By observing the final cost results of the primer design every 1000 iterations and running 

MCMC-ODPR for a maximum of 10,000 iterations, we explored the effect of the number of 

MCMC iterations on the cost, Figure 1. Primers were designed with Tm = 60 degrees 

centigrade, and with an amplicon length between 50 and 250 bp. The algorithm was repeated 

100 times and the final cost was recorded every 1000 iterations from 1000 – 10,000 

iterations, to assess the variance in the convergence. A small set of 30 barley FASTA gene 

sequences were input into MCMC-ODPR due to the extra computational costs incurred by 

running the algorithm for these many runs (totaling at 1000 runs). Unlike heuristic 

approaches to primer design which calculates a set of primers, MCMC converges upon a 

stationary distribution giving the optimal primer set, through random chain mixing. We 

would therefore expect a degree of variance amongst repeated runs. Exact convergence can 

be difficult to measure with MCMC and a number of different diagnostic approaches have 

been suggested to allow this measurement to be made (for a review, see [13]). The samples 

drawn from a MCMC sampler will diverge from the prior distribution and approximate to the 

stationary distribution as the time taken tends to infinity, therefore the bias arising from these 

samples that is not representative of the prior distribution can be a measure of convergence to 

the stationary distribution. Furthermore, as the Markov chains converge there will be an 

increasing correlation between samples and the variance can therefore be another measure. 

These measures of convergence can be assessed graphically or quantitatively and some of the 

underlying diagnostic tools are applicable from one MCMC variant (such as Gibbs sampling 

or Metropolis-Hastings) to many. However, ultimately slow chain mixing can confound any 

diagnostic as the stationary distribution is always unknown. For our purposes, however, we 

were interested in validating our approach by observing a decrease in cost over time, 

therefore we observed the cost in the designed primers over a large number of iterations. An 

overall trend can be seen that as the number of iterations increases, the total cost decreases 

and the variance is small. However, the improvement in cost was slow after 10,000 iterations 

so we carried out all our analyses using this iteration number in this study. 

Figure 1 Cost results of MCMC-ODPR over 10,000 optimizations. The program was run 

1000 times, with the first 100 being run to 1000 iterations, the second 100 run to 2000 

iterations and so on until 10,000 iterations was reached. A dataset of 30 FASTA sequences 

was input, with no SNP processing specified and a melting temperature of 60 degrees 

centigrade only 

To effectively assess the variance in the cost, coverage and the degree of redundancy 

achieved after 10,000 iterations, the MCMC-ODPR algorithm was run 1020 times. An 

average cost per covered base over the 1020 samples was 0.16 nucleotides with a standard 

error of 5.95x10
-5

 nucleotides. We analyzed the degree of redundancy that we obtained from 

the 1020 runs in Table 2. The vast majority of runs achieved 4x coverage, with the maximum 



degree of redundancy at 5x and the lowest redundancy at 2x. We also assessed the variance in 

the number of primers identified at each level of redundancy over the 1020 runs, Table 2. 

Standard errors were calculated for the number of primers at each degree of redundancy and 

it was clear that the variance was low. By multiplying the average number of identified 

primers in Table 2 by their degree of redundancy and then summing over these values, we 

arrive at a value of 654.84 primers required to obtain the same coverage when no redundancy 

is used. With redundancy, only 542.63 primers are needed (Table 2), a reduction of 17.14%. 

Table 2 The variance in the number of primers obtained from 1–5x redundancy 

Redundancy Frequency of redundancy 

value when maximum 

Number of 

primers > 0 
Average number of 

primers identified 

Standard 

error 

5x 14 14 0.01 0 

4x 867 881 1.28 0.03 

3x 130 1005 4.39 0.05 

2x 9 1020 99.54 0.1 

1x 0 1020 437.41 0.22 

The algorithm was repeated 1020 times with a small subset of 30 sequences. The maximum 

achieved redundancy obtained by MCMC-ODPR in each run was recorded and when no 

primers were obtained at a certain level of redundancy, a zero was added as an observation, 

ensuring observations at all levels of redundancy summed to 1020. Column 2 gives the 

number of frequency of primers found at each level of redundancy throughout all 1020 runs 

when their numbers were greater than none. The average number of primers identified by the 

algorithm each run and the standard error is presented. 

MCMC-ODPR performance over a temperature range 

The MCMC-ODPR algorithm enumerates through the input Tm range and designs primer sets 

for each temperature, which allows inspection of the trade off between coverage and primer 

cost over the Tm range. A set of 247 FASTA sequences was input into MCMC-ODPR, and 

primers were recursively designed from a Tm range of 50 - 70 ˚C. The optimization was run 

for 10,000 iterations at each temperature enumeration, with a target amplicon length range 

between 50 and 250 bp. For each sequence we see a gradual increase in primer cost as Tm is 

raised: suggesting MCMC-ODPR’s ability to effectively design reusable primers is 

constrained due to the rarity of suitable priming sites as Tm increases, Figure 2. The global 

coverage of sequences in our dataset by our designed primers was also calculated as a 

function of Tm, Figure 3. Unsurprisingly, the coverage decreased as melting temperature was 

increased again due to the increasing constraint on suitable priming sites for the required Tm. 

Figure 2 Cost of the designed primers over a Tm range. The dataset of 247 FASTA 

sequences were input into MCMC-ODPR with no SNP processing and 10,000 optimization 

iterations. The cost of the primers designed by MCMC-ODPR is plotted over a melting 

temperature range 

Figure 3 Coverage of the designed primers over a Tm range. The dataset of 247 FASTA 

sequences were input into MCMC-ODPR with no SNP processing and 10,000 optimization 

iterations. The percentage sequence coverage of target amplicons is plotted over a melting 

temperature range 



To observe the effect of a range of Tm on primer reuse, the number of primers for each level 

of redundancy at each Tm was plotted, Figure 4. It is clear that a higher degree of reusability 

is achievable at lower melting temperatures with the majority of reusable primers having 2x 

redundancy. Two primers that were reusable over 10 times were found at a Tm of 50 with one 

more found at a Tm of 56. We therefore suggest to users of MCMC-ODPR, that when 

possible, designing primers at slightly lower temperatures than ‘standard’ may make a large 

difference to cutting costs. 

Figure 4 Coverage of the designed primers over a Tm range. The dataset of 247 FASTA 

sequences were input into MCMC-ODPR with no SNP processing and 10,000 optimization 

iterations. The degree of primer reuse generated MCMC-ODPR is plotted over a melting 

temperature range 

Performance comparison of MCMC-ODPR with other primer design software 

Comparison with other primer design software Primer 3 and PRIMER-BLAST 

We compared MCMC-ODPR with primer design programs Primer3, Primer-BLAST, 

BatchPrimer3 and PAMPS. For primer design from single input sequences MCMC-ODPR 

was compared to Primer3, Primer-BLAST, and for multiple input sequences BatchPrimer3 

and PAMPS. Tm = 60 was used for the design of primers from MCMC-ODPR, with 10,000 

iterations. All of the programs we compared with MCMC-ODPR produced many more 

primers than would be required to amplify the target regions, with many amplicon targets 

occurring in the same area. Consequently, the total primer cost was noted, but the outputs 

were processed with a script such that non-overlapping primer pairs were selected that 

represented the maximum coverage of the target gene sequences. 

Primer3 and PRIMER-BLAST for single input sequences 

The Primer3 algorithm has been implemented in a number of other primer prediction 

programs, including BatchPrimer3 and Primer-BLAST. Primer3 and Primer-BLAST may 

only process one FASTA sequence at a time, therefore, the three barley gene sequences were 

randomly selected from our list of 247 barley genes and input into all three programs. 

Comparisons were made on the basis of the cost of designed primers in nucleotides, and the 

sequence coverage obtained from using these primers (Table 3). For the comparison of both 

programs with MCMC-ODPR the default parameters on the website were used, with a range 

of Tm of 57 to 63 degrees centigrade (60 optimum) with no allowed difference in Tm and 

primer lengths of 18-27 nucleotides (20 optimum). Both programs allow the user to specify 

the number of primer sequences returned, therefore the same number of primers as designed 

by MCMC-ODPR was selected. The PCR product size input into Primer3, Primer-BLAST 

and MCMC-ODPR was a minimum of 50 and a maximum of 250 base pairs. For the 

specificity check that Primer-BLAST performs to eliminate unspecific primer pairs the 

Hordeum vulgare non-redundant database was chosen for BLAST searching. 



Table 3 Performance of primer design software for single sequence input 

 Program Size of gene 
(bp) 

Number of primers 

in design 

Cost 
(nucleotides) 

Coverage 
(bp) 

Percentage 

Coverage 

Cost per covered base 
(nucleotides) 

Dehydrin 9 Primer3 1000 4(18) 80 401 40.1 0.2 

 Primer-

BLAST 

1000 6(12) 116 527 52.7 0.22 

 MCMC-

ODPR 

1000 9(10) 197 958 95.8 0.21 

Beta-amylase 1 Primer3 3733 10(66) 160 691 18.51 0.23 

 Primer-

BLAST 

3733 14(36) 334 998 26.73 0.33 

 MCMC-

ODPR 

3733 34(34) 682 3636 97.4 0.19 

C-repeat binding factor 3 

like protein 

Primer3 1515 8(26) 160 487 32.15 0.33 

 Primer-

BLAST 

1515 6(14) 120 473 31.22 0.25 

 MCMC-

ODPR 

1515 14(14) 274 1500 99.01 0.18 

MCMC was input with one sequence corresponding to one gene (first column) and run for 10,000 iterations. The cost per bases covered in nucleotides was 

used as a comparison of performance. MCMC-ODPR performs less optimally with one sequence, yet was able to outperform single sequence programs 

Primer3 and Primer-BLAST in all examples but one. 

Total number of primer sites identified shown in parentheses 



Primer3 designed 9 to 33 primer pairs per input sequence, from which 4 to 10 primers were 

selected to provide optimal coverage without overlap, Table 3. MCMC-ODPR achieved a 

lower cost per unit coverage than Primer 3 in all sequences except Dehydrin 9, where Primer 

3 achieved a value of 0.2 compared with MCMC-ODPR, which achieved a value of 0.21. 

Primer-BLAST designed the number of primers specified in each case (12, 36 and 14), from 

which an optimal subset 6 to 14 was selected. The resulting cost of primer for the coverage 

achieved was consistently lower in MCMC-ODPR. Furthermore the amount of target 

sequence that was covered by the PCR systems designed by MCMC-ODPR was over 95% in 

all cases, whereas the maximum coverage achieved by Primer3 and Primer-BLAST was 

40.1% and 52.7%, respectively. 

Comparison with multiple sequence input programs: BatchPrimer3 and PAMPS 

The same underlying algorithm as Primer 3 was compared with MCMC-ODPR with multiple 

sequences using BatchPrimer3, and the comparison with PAMPS allowed us to compare the 

capability of MCMC-ODPR to design reusable degenerate primers in terms of cost. A subset 

of 184 sequences was used from our list of 247 genes because of a limitation in PAMPS, 

which is restricted to sequences of 2000 base pairs or less. All sequences over 2000 base 

pairs were therefore removed. This subset was used for all three programs. BatchPrimer3 was 

used with the same default values for melting temperature and product size as with Primer3. 

BatchPrimer3 allows the user to input the desired number of primers to be returned per 

sequence, therefore for this value we chose the highest number of primers returned for all 

sequences by MCMC-ODPR, which was 10 primers. The analysis was performed first with 

allowing no difference in Tm between primer pairs for the BatchPrimer3 algorithm, as no 

difference in Tm is permissible with MCMC-ODPR, and then allowing the default Tm 

difference of 10 degrees centigrade between pairs. When no Tm difference was input to 

Batchprimer3 the sequence coverage of BatchPrimer3 was 29.7% with the total sequence 

coverage of MCMC-ODPR at a Tm of 60 degrees centigrade being 77.4% (Table 4). The cost 

of the primers designed by Batchprimer3 was 15,427 nucleotides, approximately half the cost 

of 30,103 nucleotides yielded by MCMC-ODPR, however, the coverage yielded was just 

over one third of that achieved with MCMC-ODPR. MCMC-ODPR achieved a lower cost 

per unit coverage than BatchPrimer3 of 0.19 compared with 0.25. When a maximum 

difference of ten degrees centigrade was allowed between primers for BatchPrimer3 it 

achieved a sequence coverage of 39.6% at a cost of 13,462 nucleotides, yielding a cost per 

coverage of 0.16 (not shown). Despite the lower cost of BatchPrimer3 in this case, MCMC-

ODPR still achieved a greater sequence coverage and summary cost per unit coverage value 

close to that of BatchPrimer3 with the added constraint that MCMC-ODPR only designed 

primers with no difference in Tm. 



Table 4 Performance of primer design software for multiple sequence input 

Program Number of primers 

designed 

Cost 
(nucleotides) 

Coverage 
(bp) 

Percentage 

Coverage 

Cost per covered base 
(nucleotides) 

Execution time 
(minutes)* 

MCMC-

ODPR 

1521(1786) 30103 162196 77.37 0.19 637 

BatchPrimer3 372(1153) 15427 62292 29.71 0.25 2.98 

PAMPS 1205(13598) 25284 39240 18.72 0.64 5.19 

MCMC-ODPR was run with 184 sequences for 10,000 iterations with the cost per bases covered and runtime was used as a comparison statistic for 

performance. MCMC_ODPR outperformed multiple sequence input programs BatchPrimer3 and PAMPS in terms of cost per bases covered, yet was clearly 

slower in terms of runtime. 

Total number of primer sites identified shown in parentheses. 

* MCMC-ODPR Execution was performed on a 2.26 GHz Intel
®
 Core

™
 2 Duo MacBook running Mac OS X version 10.6.8 with 2 GB RAM. Execution time 

for BatchPrimer 3 was provided by the BatchPrimer3 web server (primer design server 1) found at http://probes.pw.usda.gov/batchprimer3/. Execution for 

PAMPS was performed on a 2.31 GHz AMD Phenomtm 8650 Triple-Core Processor PC running Windows XP with 3.5 GB of RAM 



PAMPS designs degenerate primers according to ad-hoc pairwise alignments. The output of 

PAMPS is a list of degenerate primers consisting of a range of Tm with no information on 

which sequence its primers have been generated from. A script was therefore written to 

match the primers generated by PAMPS to our sequence dataset, keeping the same amplicon 

length constraints as above and only choosing primers with Tm = 60 degrees centigrade. 

PAMPS designed 1205 primers that gave maximal coverage, which was comparable to the 

number generated by MCMC-ODPR at 1521 primers. PAMPS achieved the lowest coverage 

of 18.72% of the input sequences with a cost of 25,284 nucleotides. MCMC-ODPR 

outperformed PAMPS in terms of cost per unit coverage, with this value being calculated to 

be 0.64 for PAMPS. 

From the execution times given in Table 4 it is clear that MCMC-ODPR is by far the slowest 

of the three compared programs. From Table 5 we see a dramatic decrease in the execution 

time when the number of input sequences is reduced, which shows that the primer space is 

highly influential towards execution time. MCMC-ODPR has not been optimized for speed 

and we recommend that users who require fast primer design should consider alternative 

programs, such as the comparison programs used in this study. 

Table 5 MCMC_ODPR execution time with different numbers of sequences input 

Number of input sequences Execution time (minutes) 

184 637 

100 343.34 

30 228.9 

Execution time was measured when 184, 100 and 30 sequences were input into the program. 

Execution was performed on a on a 2.26 GHz Intel
®

 Core
™

 2 Duo MacBook running Mac OS 

X version 10.6.8 with 2 GB RAM 

Conclusions 

MCMC-ODPR is a useful addition to the suite of primer design programs available in 

particular reducing costs through improved solutions to the MDPSP. The bench tests carried 

out in this study show that MCMC-ODPR consistently produced the lowest cost primer 

design all cases but two, but even then the slightly higher cost achieved a much larger 

coverage. Consequently, MCMC-ODPR was the most economically efficient primer design 

in all cases. The comparisons with other software show that by combining degeneracy with 

optimal primer reuse the user may increase the coverage of the sequences obtained by the 

designed primers at significantly lower costs. MCMC-ODPR’s enumeration through an input 

temperature range will allow the user to observe the trade off between Tm and the suitability 

of the sequence space for invoking reuse. However, as MCMC-ODPR is an optimization 

technique that utilizes the Metropolis-Hastings algorithm for optimizing primer reuse, it is 

intrinsically slow when compared to heuristic algorithms, and may possibly require a number 

of hours for multiple sequences, especially if a range of Tm has been input. 
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