233,042 research outputs found

    Brain Weight and Life-Span in Primate Species

    Get PDF
    In haplorhine primates (tarsiers, monkeys, apes, and humans), there is a significant correlation between brain weight and maximum life-span when the effect of body size is removed. There is also a significant correlation in haplorhine primates between brain weight and female age at first reproduction. For strepsirhine primates (lorises and lemurs), there are no significant correlations between brain weight and either life-span or female reproductive age when the effect of body size is removed. This lack of correlation in strepsirhine primates may be related to the fact that these primates are nocturnal and/or natives of the island of Madagascar, both of which conditions may reduce competition for resources and predation pressure. These findings suggest that in haplorhine primates the genetic systems controlling brain growth are linked to the systems governing the life cycle so that species with longer cycles have larger brains. When the effect of body weight is removed, leaf-eating haplorhines have significantly smaller brains and shorter lives than haplorhines with other diets. Harem-living haplorhines also have significantly smaller brains and shorter life-spans than troop-living haplorhines when the effect of body weight is removed. We also sought to test the rate-of-living hypothesis by determining whether primates with basal metabolic rates that are higher than would be expected for their body size have shorter maximum life-spans than would be expected for their body size. Metabolic rate is not correlated with life-span or female age at first reproduction when the effect of body size is removed

    Novel insights into the genetic diversity of Balantidium and Balantidium-like cyst-forming ciliates

    Get PDF
    Balantidiasis is considered a neglected zoonotic disease with pigs serving as reservoir hosts. However, Balantidium coli has been recorded in many other mammalian species, including primates. Here, we evaluated the genetic diversity of B. coli in non-human primates using two gene markers (SSrDNA and ITS1-5.8SDNA-ITS2). We analyzed 49 isolates of ciliates from fecal samples originating from 11 species of captive and wild primates, domestic pigs and wild boar. The phylogenetic trees were computed using Bayesian inference and Maximum likelihood. Balantidium entozoon from edible frog and Buxtonella sulcata from cattle were included in the analyses as the closest relatives of B. coli, as well as reference sequences of vestibuliferids. The SSrDNA tree showed the same phylogenetic diversification of B. coli at genus level as the tree constructed based on the ITS region. Based on the polymorphism of SSrDNA sequences, the type species of the genus, namely B. entozoon, appeared to be phylogenetically distinct from B. coli. Thus, we propose a new genus Neobalantidium for the homeothermic clade. Moreover, several isolates from both captive and wild primates (excluding great apes) clustered with B. sulcata with high support, suggesting the existence of a new species within this genus. The cysts of Buxtonella and Neobalantidium are morphologically indistinguishable and the presence of Buxtonella-like ciliates in primates opens the question about possible occurrence of these pathogens in humans

    Predictors of orbital convergence in primates: A test of the snake detection hypothesis of primate evolution

    Get PDF
    Traditional explanations for the evolution of high orbital convergence and stereoscopic vision in primates have focused on how stereopsis might have aided early primates in foraging or locomoting in an arboreal environment. It has recently been suggested that predation risk by constricting snakes was the selective force that favored the evolution of orbital convergence in early primates, and that later exposure to venomous snakes favored further degrees of convergence in anthropoid primates. Our study tests this snake detection hypothesis (SDH) by examining whether orbital convergence among extant primates is indeed associated with the shared evolutionary history with snakes or the risk that snakes pose for a given species. We predicted that orbital convergence would be higher in species that: 1) have a longer history of sympatry with venomous snakes, 2) are likely to encounter snakes more frequently, 3) are less able to detect or deter snakes due to group size effects, and 4) are more likely to be preyed upon by snakes. Results based on phylogenetically independent contrasts do not support the SDH. Orbital convergence shows no relationship to the shared history with venomous snakes, likelihood of encountering snakes, or group size. Moreover, those species less likely to be targeted as prey by snakes show significantly higher values of orbital convergence. Although an improved ability to detect camouflaged snakes, along with other cryptic stimuli, is likely a consequence of increased orbital convergence, this was unlikely to have been the primary selective force favoring the evolution of stereoscopic vision in primates

    Extrapolating from Laboratory Behavioral Research on Nonhuman Primates Is Unjustified

    Get PDF
    Conducting research on animals is supposed to be valuable because it provides information on how human mechanisms work. But for the use of animal models to be ethically justified, it must be epistemically justified. The inference from an observation about an animal model to a conclusion about humans must be warranted for the use of animals to be moral. When researchers infer from animals to humans, it’s an extrapolation. Often non-human primates are used as animal models in laboratory behavioral research. The target populations are humans and other non-human primates. I argue that the epistemology of extrapolation renders the use of non-human primates in laboratory behavioral research unreliable. If the model is relevantly similar to the target, then the experimental conditions introduce confounding variables. If the model is not relevantly similar to the target, then the observations of the model cannot be extrapolated to the target. Since using non-human primates in as animal models in laboratory behavioral research is not epistemically justified, using them as animal models in laboratory behavioral research is not ethically justified

    Neural mechanisms of economic choices in mice

    Get PDF
    Economic choices entail computing and comparing subjective values. Evidence from primates indicates that this behavior relies on the orbitofrontal cortex. Conversely, previous work in rodents provided conflicting results. Here we present a mouse model of economic choice behavior, and we show that the lateral orbital (LO) area is intimately related to the decision process. In the experiments, mice chose between different juices offered in variable amounts. Choice patterns closely resembled those measured in primates. Optogenetic inactivation of LO dramatically disrupted choices by inducing erratic changes of relative value and by increasing choice variability. Neuronal recordings revealed that different groups of cells encoded the values of individual options, the binary choice outcome and the chosen value. These groups match those previously identified in primates, except that the neuronal representation in mice is spatial (in monkeys it is good-based). Our results lay the foundations for a circuit-level analysis of economic decisions

    Comparative metabolomics in primates reveals the effects of diet and gene regulatory variation on metabolic divergence.

    Get PDF
    Human diets differ from those of non-human primates. Among few obvious differences, humans consume more meat than most non-human primates and regularly cook their food. It is hypothesized that a dietary shift during human evolution has been accompanied by molecular adaptations in metabolic pathways. Consistent with this notion, comparative studies of gene expression levels in primates have found that the regulation of genes with metabolic functions tend to evolve rapidly in the human lineage. The metabolic consequences of these regulatory differences, however, remained unknown. To address this gap, we performed a comparative study using a combination of gene expression and metabolomic profiling in livers from humans, chimpanzees, and rhesus macaques. We show that dietary differences between species have a strong effect on metabolic concentrations. In addition, we found that differences in metabolic concentration across species are correlated with inter-species differences in the expression of the corresponding enzymes, which control the same metabolic reaction. We identified a number of metabolic compounds with lineage-specific profiles, including examples of human-species metabolic differences that may be directly related to dietary differences

    Evolution and Mirror Neurons. An Introduction to the Nature of Self-Consciousness

    Get PDF
    Self-consciousness is a product of evolution. Few people today disagree with the evolutionary history of humans. But the nature of self-consciousness is still to be explained, and the story of evolution has rarely been used as a framework for studies on consciousness during the 20th century. This last point may be due to the fact that modern study of consciousness came up at a time where dominant philosophical movements were not in favor of evolutionist theories (Cunningham 1996). Research on consciousness based on Phenomenology or on Analytic Philosophy has been mostly taking the characteristics of humans as starting points. Relatively little has been done with bottom-up approaches, using performances of animals as a simpler starting point to understand the generation of consciousness through evolution. But this status may be changing, thanks to new tools coming from recent discoveries in neurology. The discovery of mirror neurons about ten years ago (Gallese et al. 1996, Rizzolatti et al. 1996) has allowed the built up of new conceptual tools for the understanding of intersubjectivity within humans and non human primates (Gallese 2001, Hurley 2005). Studies in these fields are still in progress, with discussions on the level of applicability of this natural intersubjectivity to non human primates (Decety and Chaminade 2003). We think that these subject/conspecific mental relations made possible by mirror neurons can open new paths for the understanding of the nature of self-consciousness via an evolutionist bottom-up approach. We propose here a scenario for the build up of self-consciousness through evolution by a specific analysis of two steps of evolution: first step from simple living elements to non human primates comparable to chimpanzees, and second step from these non human primates to humans. We identify these two steps as representing the evolution from basic animal awareness to body self-awareness, and from body self-awareness to self-consciousness. (we consider that today non human primates are comparable to what were pre-human primates). We position body self-awareness as corresponding to the performance of mirror self recognition as identified with chimpanzees and orangutans (Gallup). We propose to detail and understand the content of this body self-awareness through a specific evolutionist build up process using the performances of mirror neurons and group life. We address the evolutionary step from body self-awareness to self-consciousness by complementing the recently proposed approach where self-consciousness is presented as a by-product of body self-awareness amplification via a positive feedback loop resulting of anxiety limitation (Menant 2004). The scenario introduced here for the build up of self-consciousness through evolution leaves open the question about the nature of phenomenal-consciousness (Block 2002). We plan to address this question later on with the help of the scenario made available here

    Comparison of musculoskeletal networks of the primate forelimb

    Get PDF
    Anatomical network analysis is a framework for quantitatively characterizing the topological organization of anatomical structures, thus providing a way to compare structural integration and modularity among species. Here we apply this approach to study the macroevolution of the forelimb in primates, a structure whose proportions and functions vary widely within this group. We analyzed musculoskeletal network models in 22 genera, including members of all major extant primate groups and three outgroup taxa, after an extensive literature survey and dissections. The modules of the proximal limb are largely similar among taxa, but those of the distal limb show substantial variation. Some network parameters are similar within phylogenetic groups (e.g., non-primates, strepsirrhines, New World monkeys, and hominoids). Reorganization of the modules in the hominoid hand compared to other primates may relate to functional changes such as coordination of individual digit movements, increased pronation/supination, and knuckle-walking. Surprisingly, humans are one of the few taxa we studied in which the thumb musculoskeletal structures do not form an independent anatomical module. This difference may be caused by the loss in humans of some intrinsic muscles associated with the digits or the acquisition of additional muscles that integrate the thumb more closely with surrounding structures
    corecore