6 research outputs found

    Design and optimisation of a low cost Cognitive Mesh Network

    Get PDF
    Wireless Mesh Networks (WMNs) have been touted as the most promising wireless technology in providing high-bandwidth Internet access to rural, remote and under-served areas, with relatively lower investment cost as compared to traditional access networks. WMNs structurally comprise of mesh routers and mesh clients. Furthermore, WMNs have an envisaged ability to provide a heterogeneous network system that integrates wireless technologies such as IEEE 802.22 WRAN, IEEE 802.16 WiMAX, IEEE 802.11 Wi-Fi, Blue-tooth etc. The recent proliferation of new devices on the market such as smart phones and, tablets, and the growing number of resource hungry applications has placed a serious strain on spectrum availability which gives rise to the spectrum scarcity problem. The spectrum scarcity problem essentially results in increased spectrum prices that hamper the growth and efficient performance of WMNs as well as subsequent transformation of WMN into the envisaged next generation networks. Recent developments in TV white space communications technology and the emergence of Cognitive radio devices that facilitate Dynamic Spectrum Access (DSA) have provided an opportunity to mitigate the spectrum scarcity problem. To solve the scarcity problem, this thesis reconsiders the classical Network Engineering (NE) and Traffic Engineering (TE) problems to objectively design a low cost Cognitive Mesh network that promotes efficient resources utilization and thereby achieve better Quality of Service (QoS) levels

    Convergence of packet communications over the evolved mobile networks; signal processing and protocol performance

    Get PDF
    In this thesis, the convergence of packet communications over the evolved mobile networks is studied. The Long Term Evolution (LTE) process is dominating the Third Generation Partnership Project (3GPP) in order to bring technologies to the markets in the spirit of continuous innovation. The global markets of mobile information services are growing towards the Mobile Information Society. The thesis begins with the principles and theories of the multiple-access transmission schemes, transmitter receiver techniques and signal processing algorithms. Next, packet communications and Internet protocols are referred from the IETF standards with the characteristics of mobile communications in the focus. The mobile network architecture and protocols bind together the evolved packet system of Internet communications to the radio access network technologies. Specifics of the traffic models are shortly visited for their statistical meaning in the radio performance analysis. Radio resource management algorithms and protocols, also procedures, are covered addressing their relevance for the system performance. Throughout these Chapters, the commonalities and differentiators of the WCDMA, WCDMA/HSPA and LTE are covered. The main outcome of the thesis is the performance analysis of the LTE technology beginning from the early discoveries to the analysis of various system features and finally converging to an extensive system analysis campaign. The system performance is analysed with the characteristics of voice over the Internet and best effort traffic of the Internet. These traffic classes represent the majority of the mobile traffic in the converged packet networks, and yet they are simple enough for a fair and generic analysis of technologies. The thesis consists of publications and inventions created by the author that proposed several improvements to the 3G technologies towards the LTE. In the system analysis, the LTE showed by the factor of at least 2.5 to 3 times higher system measures compared to the WCDMA/HSPA reference. The WCDMA/HSPA networks are currently available with over 400 million subscribers and showing increasing growth, in the meanwhile the first LTE roll-outs are scheduled to begin in 2010. Sophisticated 3G LTE mobile devices are expected to appear fluently for all consumer segments in the following years

    Contributions to energy-aware demand-response systems using SDN and NFV for fog computing

    Get PDF
    Ever-increasing energy consumption, the depletion of non-renewable resources, the climate impact associated with energy generation, and finite energy-production capacity are important concerns worldwide that drive the urgent creation of new energy management and consumption schemes. In this regard, by leveraging the massive connectivity provided by emerging communications such as the 5G systems, this thesis proposes a long-term sustainable Demand-Response solution for the adaptive and efficient management of available energy consumption for Internet of Things (IoT) infrastructures, in which energy utilization is optimized based on the available supply. In the proposed approach, energy management focuses on consumer devices (e.g., appliances such as a light bulb or a screen). In this regard, by proposing that each consumer device be part of an IoT infrastructure, it is feasible to control its respective consumption. The proposal includes an architecture that uses Network Functions Virtualization (NFV) and Software Defined Networking technologies as enablers to promote the primary use of energy from renewable sources. Associated with architecture, this thesis presents a novel consumption model conditioned on availability in which consumers are part of the management process. To efficiently use the energy from renewable and non-renewable sources, several management strategies are herein proposed, such as the prioritization of the energy supply, workload scheduling using time-shifting capabilities, and quality degradation to decrease- the power demanded by consumers if needed. The adaptive energy management solution is modeled as an Integer Linear Programming, and its complexity has been identified to be NP-Hard. To verify the improvements in energy utilization, an optimal algorithmic solution based on a brute force search has been implemented and evaluated. Because the hardness of the adaptive energy management problem and the non-polynomial growth of its optimal solution, which is limited to energy management for a small number of energy demands (e.g., 10 energy demands) and small values of management mechanisms, several faster suboptimal algorithmic strategies have been proposed and implemented. In this context, at the first stage, we implemented three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs). Then, we incorporated into both the optimal and heuristic strategies a prepartitioning method in which the total set of analyzed services is divided into subsets of smaller size and complexity that are solved iteratively. As a result of the adaptive energy management in this thesis, we present eight strategies, one timal and seven heuristic, that when deployed in communications infrastructures such as the NFV domain, seek the best possible scheduling of demands, which lead to efficient energy utilization. The performance of the algorithmic strategies has been validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and the processing of energy demands. Additionally, the simulation results revealed that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands. This thesis also explores possible application scenarios of both the proposed architecture for adaptive energy management and algorithmic strategies. In this regard, we present some examples, including adaptive energy management in-home systems and 5G networks slicing, energy-aware management solutions for unmanned aerial vehicles, also known as drones, and applicability for the efficient allocation of spectrum in flex-grid optical networks. Finally, this thesis presents open research problems and discusses other application scenarios and future work.El constante aumento del consumo de energ铆a, el agotamiento de los recursos no renovables, el impacto clim谩tico asociado con la generaci贸n de energ铆a y la capacidad finita de producci贸n de energ铆a son preocupaciones importantes en todo el mundo que impulsan la creaci贸n urgente de nuevos esquemas de consumo y gesti贸n de energ铆a. Al aprovechar la conectividad masiva que brindan las comunicaciones emergentes como los sistemas 5G, esta tesis propone una soluci贸n de Respuesta a la Demanda sostenible a largo plazo para la gesti贸n adaptativa y eficiente del consumo de energ铆a disponible para las infraestructuras de Internet of Things (IoT), en el que se optimiza la utilizaci贸n de la energ铆a en funci贸n del suministro disponible. En el enfoque propuesto, la gesti贸n de la energ铆a se centra en los dispositivos de consumo (por ejemplo, electrodom茅sticos). En este sentido, al proponer que cada dispositivo de consumo sea parte de una infraestructura IoT, es factible controlar su respectivo consumo. La propuesta incluye una arquitectura que utiliza tecnolog铆as de Network Functions Virtualization (NFV) y Software Defined Networking como habilitadores para promover el uso principal de energ铆a de fuentes renovables. Asociada a la arquitectura, esta tesis presenta un modelo de consumo condicionado a la disponibilidad en el que los consumidores son parte del proceso de gesti贸n. Para utilizar eficientemente la energ铆a de fuentes renovables y no renovables, se proponen varias estrategias de gesti贸n, como la priorizaci贸n del suministro de energ铆a, la programaci贸n de la carga de trabajo utilizando capacidades de cambio de tiempo y la degradaci贸n de la calidad para disminuir la potencia demandada. La soluci贸n de gesti贸n de energ铆a adaptativa se modela como un problema de programaci贸n lineal entera con complejidad NP-Hard. Para verificar las mejoras en la utilizaci贸n de energ铆a, se ha implementado y evaluado una soluci贸n algor铆tmica 贸ptima basada en una b煤squeda de fuerza bruta. Debido a la dureza del problema de gesti贸n de energ铆a adaptativa y el crecimiento no polinomial de su soluci贸n 贸ptima, que se limita a la gesti贸n de energ铆a para un peque帽o n煤mero de demandas de energ铆a (por ejemplo, 10 demandas) y peque帽os valores de los mecanismos de gesti贸n, varias estrategias algor铆tmicas sub贸ptimos m谩s r谩pidos se han propuesto. En este contexto, en la primera etapa, implementamos tres estrategias heur铆sticas: una estrategia codiciosa (GreedyTs), una soluci贸n basada en algoritmos gen茅ticos (GATs) y un enfoque de programaci贸n din谩mica (DPTs). Luego, incorporamos tanto en la estrategia 贸ptima como en la- heur铆stica un m茅todo de prepartici贸n en el que el conjunto total de servicios analizados se divide en subconjuntos de menor tama帽o y complejidad que se resuelven iterativamente. Como resultado de la gesti贸n adaptativa de la energ铆a en esta tesis, presentamos ocho estrategias, una 贸ptima y siete heur铆sticas, que cuando se despliegan en infraestructuras de comunicaciones como el dominio NFV, buscan la mejor programaci贸n posible de las demandas, que conduzcan a un uso eficiente de la energ铆a. El desempe帽o de las estrategias algor铆tmicas ha sido validado a trav茅s de extensas simulaciones en varios escenarios, demostrando mejoras en el consumo de energ铆a y el procesamiento de las demandas de energ铆a. Los resultados de la simulaci贸n revelaron que los enfoques heur铆sticos producen soluciones de alta calidad cercanas a las 贸ptimas mientras se ejecutan entre dos y siete 贸rdenes de magnitud m谩s r谩pido y con aplicabilidad a escenarios con miles y cientos de miles de demandas de energ铆a. Esta tesis tambi茅n explora posibles escenarios de aplicaci贸n tanto de la arquitectura propuesta para la gesti贸n adaptativa de la energ铆a como de las estrategias algor铆tmicas. En este sentido, presentamos algunos ejemplos, que incluyen sistemas de gesti贸n de energ铆a adaptativa en el hogar, en 5G networkPostprint (published version
    corecore