169 research outputs found

    Spectrum cartography techniques, challenges, opportunities, and applications: A survey

    Get PDF
    The spectrum cartography finds applications in several areas such as cognitive radios, spectrum aware communications, machine-type communications, Internet of Things, connected vehicles, wireless sensor networks, and radio frequency management systems, etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques for the construction of various radio environment maps (REMs). Following a brief overview on spectrum cartography, various techniques considered to construct the REMs such as channel gain map, power spectral density map, power map, spectrum map, power propagation map, radio frequency map, and interference map are reviewed. In this paper, we compare the performance of the different spectrum cartography methods in terms of mean absolute error, mean square error, normalized mean square error, and root mean square error. The information presented in this paper aims to serve as a practical reference guide for various spectrum cartography methods for constructing different REMs. Finally, some of the open issues and challenges for future research and development are discussed.publishedVersio

    Spectrum Sensing Algorithms for Cognitive Radio Applications

    Get PDF
    Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies

    A Channel Ranking And Selection Scheme Based On Channel Occupancy And SNR For Cognitive Radio Systems

    Get PDF
    Wireless networks and information traffic have grown exponentially over the last decade. Consequently, an increase in demand for radio spectrum frequency bandwidth has resulted. Recent studies have shown that with the current fixed spectrum allocation (FSA), radio frequency band utilization ranges from 15% to 85%. Therefore, there are spectrum holes that are not utilized all the time by the licensed users, and, thus the radio spectrum is inefficiently exploited. To solve the problem of scarcity and inefficient utilization of the spectrum resources, dynamic spectrum access has been proposed as a solution to enable sharing and using available frequency channels. With dynamic spectrum allocation (DSA), unlicensed users can access and use licensed, available channels when primary users are not transmitting. Cognitive Radio technology is one of the next generation technologies that will allow efficient utilization of spectrum resources by enabling DSA. However, dynamic spectrum allocation by a cognitive radio system comes with the challenges of accurately detecting and selecting the best channel based on the channelâs availability and quality of service. Therefore, the spectrum sensing and analysis processes of a cognitive radio system are essential to make accurate decisions. Different spectrum sensing techniques and channel selection schemes have been proposed. However, these techniques only consider the spectrum occupancy rate for selecting the best channel, which can lead to erroneous decisions. Other communication parameters, such as the Signal-to-Noise Ratio (SNR) should also be taken into account. Therefore, the spectrum decision-making process of a cognitive radio system must use techniques that consider spectrum occupancy and channel quality metrics to rank channels and select the best option. This thesis aims to develop a utility function based on spectrum occupancy and SNR measurements to model and rank the sensed channels. An evolutionary algorithm-based SNR estimation technique was developed, which enables adaptively varying key parameters of the existing Eigenvalue-based blind SNR estimation technique. The performance of the improved technique is compared to the existing technique. Results show the evolutionary algorithm-based estimation performing better than the existing technique. The utility-based channel ranking technique was developed by first defining channel utility function that takes into account SNR and spectrum occupancy. Different mathematical functions were investigated to appropriately model the utility of SNR and spectrum occupancy rate. A ranking table is provided with the utility values of the sensed channels and compared with the usual occupancy rate based channel ranking. According to the results, utility-based channel ranking provides a better scope of making an informed decision by considering both channel occupancy rate and SNR. In addition, the efficiency of several noise cancellation techniques was investigated. These techniques can be employed to get rid of the impact of noise on the received or sensed signals during spectrum sensing process of a cognitive radio system. Performance evaluation of these techniques was done using simulations and the results show that the evolutionary algorithm-based noise cancellation techniques, particle swarm optimization and genetic algorithm perform better than the regular gradient descent based technique, which is the least-mean-square algorithm

    Machine Learning Tools for Radio Map Estimation in Fading-Impaired Channels

    Get PDF
    In spectrum cartography, also known as radio map estimation, one constructs maps that provide the value of a given channel metric such as as the received power, power spectral density (PSD), electromagnetic absorption, or channel-gain for every spatial location in the geographic area of interest. The main idea is to deploy sensors and measure the target channel metric at a set of locations and interpolate or extrapolate the measurements. Radio maps nd a myriad of applications in wireless communications such as network planning, interference coordination, power control, spectrum management, resource allocation, handoff optimization, dynamic spectrum access, and cognitive radio. More recently, radio maps have been widely recognized as an enabling technology for unmanned aerial vehicle (UAV) communications because they allow autonomous UAVs to account for communication constraints when planning a mission. Additional use cases include radio tomography and source localization.publishedVersio

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    A Tutorial on Environment-Aware Communications via Channel Knowledge Map for 6G

    Full text link
    Sixth-generation (6G) mobile communication networks are expected to have dense infrastructures, large-dimensional channels, cost-effective hardware, diversified positioning methods, and enhanced intelligence. Such trends bring both new challenges and opportunities for the practical design of 6G. On one hand, acquiring channel state information (CSI) in real time for all wireless links becomes quite challenging in 6G. On the other hand, there would be numerous data sources in 6G containing high-quality location-tagged channel data, making it possible to better learn the local wireless environment. By exploiting such new opportunities and for tackling the CSI acquisition challenge, there is a promising paradigm shift from the conventional environment-unaware communications to the new environment-aware communications based on the novel approach of channel knowledge map (CKM). This article aims to provide a comprehensive tutorial overview on environment-aware communications enabled by CKM to fully harness its benefits for 6G. First, the basic concept of CKM is presented, and a comparison of CKM with various existing channel inference techniques is discussed. Next, the main techniques for CKM construction are discussed, including both the model-free and model-assisted approaches. Furthermore, a general framework is presented for the utilization of CKM to achieve environment-aware communications, followed by some typical CKM-aided communication scenarios. Finally, important open problems in CKM research are highlighted and potential solutions are discussed to inspire future work
    • …
    corecore