54 research outputs found

    Fatty images of the heart: spectrum of normal and pathological findings at computed tomography and cardiac magnetic resonance imaging.

    Get PDF
    Ectopic cardiac fatty images are not rarely detected incidentally at computed tomography and cardiac magnetic resonance, either in exams focused on the heart as in general thoracic imaging evaluations. A correct interpretation of these findings is essential in order to recognize their normal or pathological meaning, focusing on the eventually associated clinical implications. The development of techniques such as computed tomography and cardiac magnetic resonance allowed a detailed detection and evaluation of adipose tissue within the heart. This pictorial review illustrates the most common characteristics of cardiac fatty images at computed tomography and cardiac magnetic resonance, in a spectrum of normal and pathological conditions ranging from physiological adipose images to diseases presenting with cardiac fatty foci. Physiologic intramyocardial adipose tissue may normally be present in healthy adults, being not related to cardiac affections and without any clinical consequence. However cardiac fatty images may also be the expression of various diseases, comprehending arrhythmogenic right ventricular dysplasia, post-myocardial infarction lipomatous metaplasia, dilated cardiomyopathy and lipomatous hypertrophy of the inter-atrial septum. Fatty neoplasms of the heart as lipoma and liposarcoma are also described

    Cardiac Masses on Cardiac CT: A Review

    Get PDF
    Cardiac masses are rare entities that can be broadly categorized as either neoplastic or non-neoplastic. Neoplastic masses include benign and malignant tumors. In the heart, metastatic tumors are more common than primary malignant tumors. Whether incidentally found or diagnosed as a result of patients’ symptoms, cardiac masses can be identified and further characterized by a range of cardiovascular imaging options. While echocardiography remains the first-line imaging modality, cardiac computed tomography (cardiac CT) has become an increasingly utilized modality for the assessment of cardiac masses, especially when other imaging modalities are non-diagnostic or contraindicated. With high isotropic spatial and temporal resolution, fast acquisition times, and multiplanar image reconstruction capabilities, cardiac CT offers an alternative to cardiovascular magnetic resonance imaging in many patients. Additionally, cardiac masses may be incidentally discovered during cardiac CT for other reasons, requiring imagers to understand the unique features of a diverse range of cardiac masses. Herein, we define the characteristic imaging features of commonly encountered and selected cardiac masses and define the role of cardiac CT among noninvasive imaging options

    Non-Malignant Cardiac Tumors

    Get PDF
    Cardiac tumors represent an unusual clinical problem in that they are often discovered as an incidental finding during a routine echocardiogram or in the course of a work-up for a source of embolism. Malignant tumors of the heart are either defined as primary or metastatic from an extra-cardiac primary source—regardless, the prognosis is poor. However, there are several cardiac tumors that are characterized as being non-malignant with regard to their tumor biology, but their tendencies to cause embolic or obstructive complications can be just as catastrophic despite a lack of invasiveness or potential to metastasize. The purpose of this chapter is to review the common types of non-malignant cardiac tumors with regard to their incidence, presentation, potential for complications, and management—with emphasis on surgical indications and techniques

    Cardiac Lipoma: An Uncharacteristically Large Intra-Atrial Mass Causing Symptoms

    Get PDF

    Cardiac tumours in children

    Get PDF
    Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT) and Magnetic Resonance Imaging (MRI) of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor

    Advances in clinical applications of cardiovascular magnetic resonance imaging

    Get PDF
    Cardiovascular magnetic resonance (CMR) is an evolving technology with growing indications within the clinical cardiology setting. This review article summarises the current clinical applications of CMR. The focus is on the use of CMR in the diagnosis of coronary artery disease with summaries of validation literature in CMR viability, myocardial perfusion, and dobutamine CMR. Practical uses of CMR in non-coronary diseases are also discussed

    Tissue characterization of benign cardiac tumors by cardiac magnetic resonance imaging, a review of core imaging protocol and benign cardiac tumors

    Get PDF
    Generally, cardiac masses are initially suspected on routine echocardiography. Cardiac magnetic resonance (CMR) imaging is further performed to differentiate tumors from pseudo-tumors and to characterize the cardiac masses based on their appearance on T1/T2-weighted images, detection of perfusion and demonstration of gadolinium-based contrast agent uptake on early and late gadolinium enhancement images. Further evaluation of cardiac masses by CMR is critical because unnecessary surgery can be avoided by better tissue characterization. Different cardiac tissues have different T1 and T2 relaxation times, principally owing to different internal biochemical environments surrounding the protons. In CMR, the signal intensity from a particular tissue depends on its T1 and T2 relaxation times and its proton density. CMR uses this principle to differentiate between various tissue types by weighting images based on their T1 or T2 relaxation times. Generally, tumor cells are larger, edematous, and have associated inflammatory reactions. Higher free water content of the neoplastic cells and other changes in tissue composition lead to prolonged T1/T2 relaxation times and thus an inherent contrast between tumors and normal tissue exists. Overall, these biochemical changes create an environment where different cardiac masses produce different signal intensity on their T1- weighted and T2- weighted images that help to discriminate between them. In this review article, we have provided a detailed description of the core CMR imaging protocol for evaluation of cardiac masses. We have also discussed the basic features of benign cardiac tumors as well as the role of CMR in evaluation and further tissue characterization of these tumors
    • …
    corecore