657 research outputs found

    Four primality testing algorithms

    Get PDF
    In this expository paper we describe four primality tests. The first test is very efficient, but is only capable of proving that a given number is either composite or 'very probably' prime. The second test is a deterministic polynomial time algorithm to prove that a given numer is either prime or composite. The third and fourth primality tests are at present most widely used in practice. Both tests are capable of proving that a given number is prime or composite, but neither algorithm is deterministic. The third algorithm exploits the arithmetic of cyclotomic fields. Its running time is almost, but not quite polynomial time. The fourth algorithm exploits elliptic curves. Its running time is difficult to estimate, but it behaves well in practice.Comment: 21 page

    Deterministic elliptic curve primality proving for a special sequence of numbers

    Full text link
    We give a deterministic algorithm that very quickly proves the primality or compositeness of the integers N in a certain sequence, using an elliptic curve E/Q with complex multiplication by the ring of integers of Q(sqrt(-7)). The algorithm uses O(log N) arithmetic operations in the ring Z/NZ, implying a bit complexity that is quasi-quadratic in log N. Notably, neither of the classical "N-1" or "N+1" primality tests apply to the integers in our sequence. We discuss how this algorithm may be applied, in combination with sieving techniques, to efficiently search for very large primes. This has allowed us to prove the primality of several integers with more than 100,000 decimal digits, the largest of which has more than a million bits in its binary representation. At the time it was found, it was the largest proven prime N for which no significant partial factorization of N-1 or N+1 is known.Comment: 16 pages, corrected a minor sign error in 5.

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page

    Implementing the asymptotically fast version of the elliptic curve primality proving algorithm

    Get PDF
    The elliptic curve primality proving (ECPP) algorithm is one of the current fastest practical algorithms for proving the primality of large numbers. Its running time cannot be proven rigorously, but heuristic arguments show that it should run in time O ((log N)^5) to prove the primality of N. An asymptotically fast version of it, attributed to J. O. Shallit, runs in time O ((log N)^4). The aim of this article is to describe this version in more details, leading to actual implementations able to handle numbers with several thousands of decimal digits
    • …
    corecore