599 research outputs found

    Power Efficient and Secure Full-Duplex Wireless Communication Systems

    Full text link
    In this paper, we study resource allocation for a full-duplex (FD) radio base station serving multiple half-duplex (HD) downlink and uplink users simultaneously. The considered resource allocation algorithm design is formulated as a non-convex optimization problem taking into account minimum required receive signal-to-interference-plus-noise ratios (SINRs) for downlink and uplink communication and maximum tolerable SINRs at potential eavesdroppers. The proposed optimization framework enables secure downlink and uplink communication via artificial noise generation in the downlink for interfering the potential eavesdroppers. We minimize the weighted sum of the total downlink and uplink transmit power by jointly optimizing the downlink beamformer, the artificial noise covariance matrix, and the uplink transmit power. We adopt a semidefinite programming (SDP) relaxation approach to obtain a tractable solution for the considered problem. The tightness of the SDP relaxation is revealed by examining a sufficient condition for the global optimality of the solution. Simulation results demonstrate the excellent performance achieved by the proposed scheme and the significant transmit power savings enabled optimization of the artificial noise covariance matrix.Comment: 6 pages, invited paper, IEEE Conference on Communications and Network Security (CNS) 2015 in Florence, Italy, on September 30, 201

    Optimal and Robust Transmit Designs for MISO Channel Secrecy by Semidefinite Programming

    Full text link
    In recent years there has been growing interest in study of multi-antenna transmit designs for providing secure communication over the physical layer. This paper considers the scenario of an intended multi-input single-output channel overheard by multiple multi-antenna eavesdroppers. Specifically, we address the transmit covariance optimization for secrecy-rate maximization (SRM) of that scenario. The challenge of this problem is that it is a nonconvex optimization problem. This paper shows that the SRM problem can actually be solved in a convex and tractable fashion, by recasting the SRM problem as a semidefinite program (SDP). The SRM problem we solve is under the premise of perfect channel state information (CSI). This paper also deals with the imperfect CSI case. We consider a worst-case robust SRM formulation under spherical CSI uncertainties, and we develop an optimal solution to it, again via SDP. Moreover, our analysis reveals that transmit beamforming is generally the optimal transmit strategy for SRM of the considered scenario, for both the perfect and imperfect CSI cases. Simulation results are provided to illustrate the secrecy-rate performance gains of the proposed SDP solutions compared to some suboptimal transmit designs.Comment: 32 pages, 5 figures; to appear, IEEE Transactions on Signal Processing, 201

    Knowing-How and the Deduction Theorem

    Get PDF
    In his seminal address delivered in 1945 to the Royal Society Gilbert Ryle considers a special case of knowing-how, viz., knowing how to reason according to logical rules. He argues that knowing how to use logical rules cannot be reduced to a propositional knowledge. We evaluate this argument in the context of two different types of formal systems capable to represent knowledge and support logical reasoning: Hilbert-style systems, which mainly rely on axioms, and Gentzen-style systems, which mainly rely on rules. We build a canonical syntactic translation between appropriate classes of such systems and demonstrate the crucial role of Deduction Theorem in this construction. This analysis suggests that one's knowledge of axioms and one's knowledge of rules under appropriate conditions are also mutually translatable. However our further analysis shows that the epistemic status of logical knowing-how ultimately depends on one's conception of logical consequence: if one construes the logical consequence after Tarski in model-theoretic terms then the reduction of knowing-how to knowing-that is in a certain sense possible but if one thinks about the logical consequence after Prawitz in proof-theoretic terms then the logical knowledge-how gets an independent status. Finally we extend our analysis to the case of extra-logical knowledge-how representable with Gentzen-style formal systems, which admit constructive meaning explanations. For this end we build a typed sequential calculus and prove for it a ``constructive'' Deduction Theorem interpretable in extra-logical terms. We conclude with a number of open questions, which concern translations between knowledge-how and knowledge-that in this more general semantic setting

    Privacy-Preserving Distributed Processing Over Networks

    Get PDF

    Knowing-How and the Deduction Theorem

    Get PDF
    In his seminal address delivered in 1945 to the Royal Society Gilbert Ryle considers a special case of knowing-how, viz., knowing how to reason according to logical rules. He argues that knowing how to use logical rules cannot be reduced to a propositional knowledge. We evaluate this argument in the context of two different types of formal systems capable to represent knowledge and support logical reasoning: Hilbert-style systems, which mainly rely on axioms, and Gentzen-style systems, which mainly rely on rules. We build a canonical syntactic translation between appropriate classes of such systems and demonstrate the crucial role of Deduction Theorem in this construction. This analysis suggests that one's knowledge of axioms and one's knowledge of rules under appropriate conditions are also mutually translatable. However our further analysis shows that the epistemic status of logical knowing-how ultimately depends on one's conception of logical consequence: if one construes the logical consequence after Tarski in model-theoretic terms then the reduction of knowing-how to knowing-that is in a certain sense possible but if one thinks about the logical consequence after Prawitz in proof-theoretic terms then the logical knowledge-how gets an independent status. Finally we extend our analysis to the case of extra-logical knowledge-how representable with Gentzen-style formal systems, which admit constructive meaning explanations. For this end we build a typed sequential calculus and prove for it a ``constructive'' Deduction Theorem interpretable in extra-logical terms. We conclude with a number of open questions, which concern translations between knowledge-how and knowledge-that in this more general semantic setting

    A Concrete Treatment of Efficient Continuous Group Key Agreement via Multi-Recipient PKEs

    Get PDF
    Continuous group key agreements (CGKAs) are a class of protocols that can provide strong security guarantees to secure group messaging protocols such as Signal and MLS. Protection against device compromise is provided by commit messages: at a regular rate, each group member may refresh their key material by uploading a commit message, which is then downloaded and processed by all the other members. In practice, propagating commit messages dominates the bandwidth consumption of existing CGKAs. We propose Chained CmPKE, a CGKA with an asymmetric bandwidth cost: in a group of N members, a commit message costs O(N) to upload and O(1) to download, for a total bandwidth cost of O(N). In contrast, TreeKEM costs (log N) in both directions, for a total cost (N log N). Our protocol relies on generic primitives, and is therefore readily post-quantum. We go one step further and propose post-quantum primitives that are tailored to \Chained CmPKE, which allows us to cut the growth rate of uploaded commit messages by two or three orders of magnitude compared to naive instantiations. Finally, we realize a software implementation of Chained CmPKE. Our experiments show that even for groups with a size as large as N = 2^10, commit messages can be computed and processed in less than 100 ms

    Low-complexity weak pseudorandom functions in AC0[MOD2]

    Get PDF
    A weak pseudorandom function (WPRF) is a keyed function fk:{0,1}n→{0,1} such that, for a random key k, a collection of samples (x,fk(x)), for uniformly random inputs x, cannot be efficiently distinguished from totally random input-output pairs (x, y). We study WPRFs in AC0[MOD2], the class of functions computable by AC0 circuits with parity gates, making

    How to Meet Ternary LWE Keys on Babai’s Nearest Plane

    Get PDF
    A cryptographic primitive based on the Learning With Errors (LWE) problem with its variants is a promising candidate for the efficient quantum-resistant public key cryptosystem. The recent schemes use the LWE problem with a small-norm or sparse secret key for better efficiency. Such constraints, however, lead to more tailor-made attacks and thus are a trade-off between efficiency and security. Improving the algorithm for the LWE problem with the constraints thus has a significant consequence in the concrete security of schemes. In this paper, we present a new hybrid attack on the LWE problem. This new attack combines the primal lattice attack and an improved MitM attack called Meet-LWE, answering an open problem posed by May [Crypto\u2721]. According to our estimation, the new hybrid attack performs better than the previous attacks for the LWE problems with a sparse ternary secret key, which plays the significant role for the efficiency of fully homomorphic encryption schemes. In terms of the technical part, we generalize the Meet-LWE algorithm to be compatible with Babai\u27s nearest plane algorithm. As a side contribution, we remove the error guessing step in Meet-LWE, resolving another open question
    • …
    corecore