676 research outputs found

    Keeping Context In Mind: Automating Mobile App Access Control with User Interface Inspection

    Full text link
    Recent studies observe that app foreground is the most striking component that influences the access control decisions in mobile platform, as users tend to deny permission requests lacking visible evidence. However, none of the existing permission models provides a systematic approach that can automatically answer the question: Is the resource access indicated by app foreground? In this work, we present the design, implementation, and evaluation of COSMOS, a context-aware mediation system that bridges the semantic gap between foreground interaction and background access, in order to protect system integrity and user privacy. Specifically, COSMOS learns from a large set of apps with similar functionalities and user interfaces to construct generic models that detect the outliers at runtime. It can be further customized to satisfy specific user privacy preference by continuously evolving with user decisions. Experiments show that COSMOS achieves both high precision and high recall in detecting malicious requests. We also demonstrate the effectiveness of COSMOS in capturing specific user preferences using the decisions collected from 24 users and illustrate that COSMOS can be easily deployed on smartphones as a real-time guard with a very low performance overhead.Comment: Accepted for publication in IEEE INFOCOM'201

    Understanding the Evolution of Android App Vulnerabilities

    Get PDF
    The Android ecosystem today is a growing universe of a few billion devices, hundreds of millions of users and millions of applications targeting a wide range of activities where sensitive information is collected and processed. Security of communication and privacy of data are thus of utmost importance in application development. Yet, regularly, there are reports of successful attacks targeting Android users. While some of those attacks exploit vulnerabilities in the Android OS, others directly concern application-level code written by a large pool of developers with varying experience. Recently, a number of studies have investigated this phenomenon, focusing however only on a specific vulnerability type appearing in apps, and based on only a snapshot of the situation at a given time. Thus, the community is still lacking comprehensive studies exploring how vulnerabilities have evolved over time, and how they evolve in a single app across developer updates. Our work fills this gap by leveraging a data stream of 5 million app packages to re-construct versioned lineages of Android apps and finally obtained 28;564 app lineages (i.e., successive releases of the same Android apps) with more than 10 app versions each, corresponding to a total of 465;037 apks. Based on these app lineages, we apply state-of- the-art vulnerability-finding tools and investigate systematically the reports produced by each tool. In particular, we study which types of vulnerabilities are found, how they are introduced in the app code, where they are located, and whether they foreshadow malware. We provide insights based on the quantitative data as reported by the tools, but we further discuss the potential false positives. Our findings and study artifacts constitute a tangible knowledge to the community. It could be leveraged by developers to focus verification tasks, and by researchers to drive vulnerability discovery and repair research efforts

    Characterizing Location-based Mobile Tracking in Mobile Ad Networks

    Full text link
    Mobile apps nowadays are often packaged with third-party ad libraries to monetize user data

    A taxonomy of attacks and a survey of defence mechanisms for semantic social engineering attacks

    Get PDF
    Social engineering is used as an umbrella term for a broad spectrum of computer exploitations that employ a variety of attack vectors and strategies to psychologically manipulate a user. Semantic attacks are the specific type of social engineering attacks that bypass technical defences by actively manipulating object characteristics, such as platform or system applications, to deceive rather than directly attack the user. Commonly observed examples include obfuscated URLs, phishing emails, drive-by downloads, spoofed web- sites and scareware to name a few. This paper presents a taxonomy of semantic attacks, as well as a survey of applicable defences. By contrasting the threat landscape and the associated mitigation techniques in a single comparative matrix, we identify the areas where further research can be particularly beneficial

    Assessing database and network threats in traditional and cloud computing

    Get PDF
    Cloud Computing is currently one of the most widely-spoken terms in IT. While it offers a range of technological and financial benefits, its wide acceptance by organizations is not yet wide spread. Security concerns are a main reason for this and this paper studies the data and network threats posed in both traditional and cloud paradigms in an effort to assert in which areas cloud computing addresses security issues and where it does introduce new ones. This evaluation is based on Microsoft’s STRIDE threat model and discusses the stakeholders, the impact and recommendations for tackling each threat
    • …
    corecore