
Int. J. Inf. Secur. (2016) 15:597–620
DOI 10.1007/s10207-016-0348-7

SPECIAL ISSUE PAPER

Secure modular password authentication for the web using
channel bindings

Mark Manulis1 · Douglas Stebila2 · Franziskus Kiefer3 · Nick Denham4

Published online: 21 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Secure protocols for password-based user authen-
tication are well-studied in the cryptographic literature
but have failed to see wide-spread adoption on the inter-
net; most proposals to date require extensive modifications
to the Transport Layer Security (TLS) protocol, making
deployment challenging. Recently, a few modular designs
have been proposed in which a cryptographically secure
password-based mutual authentication protocol is run inside
a confidential (but not necessarily authenticated) channel
such as TLS; the password protocol is bound to the estab-
lished channel to prevent active attacks. Such protocols
are useful in practice for a variety of reasons: security no
longer relies on users’ ability to validate server certificates
and can potentially be implemented with no modifications
to the secure channel protocol library. We provide a sys-
tematic study of such authentication protocols. Building
on recent advances in modeling TLS, we give a formal
definition of the intended security goal, which we call
password-authenticated and confidential channel establish-
ment (PACCE).We showgenerically that combining a secure

This paper is an extended full version of [34].

B Franziskus Kiefer
mail@franziskuskiefer.de

Mark Manulis
mark@manulis.eu

Douglas Stebila
stebilad@mcmaster.ca

1 Surrey Centre for Cyber Security, Department of Computer
Science, University of Surrey, Guildford, UK

2 McMaster University, Hamilton, ON, Canada

3 Mozilla, Berlin, Germany

4 Queensland University of Technology, Brisbane, Australia

channel protocol, such as TLS, with a password authentica-
tion or password-authenticated key exchangeprotocol,where
the two protocols are bound together using the transcript
of the secure channel’s handshake, the server’s certificate,
or the server’s domain name, results in a secure PACCE
protocol. Our prototypes based on TLS are available as a
cross-platform client-side Firefox browser extension as well
as an Android application and a server-side web application
that can easily be installed on servers.

Keywords Password authentication · Transport Layer
Security · Channel binding

1 Introduction

Authentication using passwords is perhaps the most promi-
nent and human-friendly user authentication mechanism
widely deployed on the Web. In this ubiquitous approach,
which we refer to as HTML-forms-over-TLS, the user’s
password is sent encrypted over an established server-
authenticated Transport Layer Security [TLS, previously
known as Secure Sockets Layer (SSL)] channel in response
to a received HTML form. This approach is subject to
many threats: the main problems with this technique are
that security fully relies on a functional X.509 public key
infrastructure (PKI) and on users correctly validating the
server’s X.509 certificate. In practice, these assumptions are
unreliable due to a variety of reasons: the many reported
problems with the trustworthiness of certification authori-
ties (CAs), inadequate deployment of certificate revocation
checking, ongoing threats from phishing attacks, and the
poor ability of the users to understand and validate certifi-
cates [40,41]. Hypertext Transport Protocol (HTTP) basic
and digest access authentication [22] has been standardized,

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81827145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-016-0348-7&domain=pdf

598 M. Manulis et al.

and digest authentication offers limited protection for pass-
words, but usage is rare. Public key authentication of users,
e.g., usingX.509 certificates, is also rare. This work proposes
a novel way of performing cryptographically secure mutual
password-based authentication on the internet.

1.1 Password-authenticated key exchange

Password-authenticated key exchange (PAKE) protocols,
which were introduced by Bellovin and Merritt [11], and
the security of which was formalized in several settings
[3,10,15,17], could mitigate many of the risks of the HTML-
forms-over-TLS approach as they do not rely on any PKI
and offer stronger protection for client passwords against
server impersonation attacks, such as phishing. PAKE pro-
tocols allow two parties to determine whether they both
know a particular string while cryptographically hiding any
information about the string. They are resistant to offline
dictionary attacks: an adversary who observes or partici-
pates in the protocol cannot test many passwords against
the transcript. Successful execution of a PAKE protocol also
provides parties with secure session keys which can be used
for encryption.

Despite the many benefits and the presence of a variety of
PAKE protocols in the academic literature and in standards
[25–27], PAKE-based approaches for client authentication
have not been adopted in practice. There is no PAKE standard
that has been agreed upon and implemented in existing web
browser and server technologies. This is due to several prac-
tical obstacles, including: patents covering PAKE in general
(some of which have recently expired in the US) and PAKE
standards such as the Secure Remote Password (SRP) pro-
tocol [43], lack of agreement on the appropriate layer within
the networking stack for the integration of PAKE [20], com-
plexity of backwards-compatible deployment with TLS, and
user interface challenges.

There have been a few proposals to integrate PAKE into
TLS by adding password-based ciphersuites as an alterna-
tive to public-key-authenticated ciphersuites. For instance,
SRP has been standardized as a TLS ciphersuite [42] and has
several reference implementations but none in major web
browsers or servers. Abdalla et al. [1] proposed the provably
secure Simple Open Key Exchange (SOKE) ciphersuite,
which uses a variant of the PAKE protocol from [5] that is
part of the IEEE-P1363.2 standard [25]. The J-PAKE proto-
col [24] is used in a few custom applications. Common to all
PAKE ciphersuite approaches is that the execution of PAKE
becomes part of the TLS handshake protocol: the key out-
put by PAKE is treated as the TLS pre-master secret, which
is then used to derive further encryption keys according to
the TLS specification. An advantage of this approach is that
secure password authentication could subsequently be used
in any application that makes use of TLS, and that standard

TLS mechanisms for key derivation and secure record-layer
communication can continue to be used. However, a major
disadvantage is that any new ciphersuites in TLS require sub-
stantial vendor-side modifications of the web browser and
server software. This is problematic for modern web server
application architectures within large organizations, where a
TLSaccelerator immediately handles theTLShandshake and
encryption, then hands the plaintext off to the first of many
application servers; requiring the TLS accelerator to have
access to the list of valid usernames and passwordsmaymean
a substantial re-architecting. Moreover, using solely PAKE
in TLS means abandoning the web public key infrastructure.

1.2 Running PAKE at the application layer

A better approach for realizing secure password-based
authentication on the web may be to rely on existing TLS
implementations to provide confidential communication
between clients and servers, and integrate application-level
PAKE for password-based authentication, without requiring
proposing any new TLS ciphersuites or changing any of the
steps of TLS handshake specification.

However, if the TLS channel is only assumed to pro-
vide confidentiality, not authentication, then one must use an
alternative mechanism to rule out man-in-the-middle attacks
on the TLS channel. Since it is the password-based proto-
col that provides mutual authentication, there should be a
binding between the TLS channel and the password-based
protocol. There are several potential values which might be
used for binding: the transcript of the TLS handshake pro-
tocol, the TLS master secret key (or a value derived from it,
such as the TLS Finished message), the server’s certifi-
cate, or even the server’s domain name. A recent standard [9]
describes three TLS channel bindings, two of which are rel-
evant to us: tls-unique in which the binding string is the
Finished message, and tls-server-end-point in
which the binding string is the hash of the server’s certificate.

Notably, TLS channel bindings do not change the TLS
protocol itself: all TLS protocol messages, ciphersuites, data
transmitted, and all other values are entirely unchanged.
Rather, TLS channel bindings expose an additional value to
the application that can be obtained locally, thereby requiring
minimal changes to TLS implementations. Using the domain
name rather than a property of the TLS channel allows per-
forming the authentication prior to establishment of the TLS
channel.

Several recent works have proposed protocols of this
form, running PAKE on the application layer. Oiwa et al.
[7,36–38] published an Internet-Draft that employs an ISO-
standardized PAKE protocol (KAM3 [26, Sect. 6.3], [32])
and binds it to the TLS channel using either the server’s
certificate or the TLS master secret key, but no formal jus-
tification is given for security of the combined construction.

123

Secure modular password authentication for the web using channel bindings 599

(a) (b)

Fig. 1 High-level approaches for combining password authentication
with a TLS channel to establish a single password-authenticated secure
channel. a Constructions 1 and 2: Tunneling a tag-based password

authentication protocol through a secure channel. b Construction 3:
Establishing a tag-based password-authenticated session key k and
sending that through the secure channel

Dacosta et al. [18] proposed the DVCert protocol which aims
to achieve direct validation of the TLS server certificates by
using a modification of the protocol from [15] for secure
server-to-client password-based authentication.

1.3 Contributions

We propose and analyze three modular constructions for
smooth integration of PAKE functionality with secure chan-
nels such as TLS without requiring any modification to the
original channel protocol specification, nor requiring aban-
doning public key server certificates.

This is achieved through a black-box combination of
a secure channel establishment protocol with a password-
only authentication or key exchange protocol as illustrated
in Fig. 1. The latter is bound to the channel establishment
phase in order to detect and prevent any man-in-the-middle
attacks. This binding is achieved using tag-based versions of
password protocols, which in addition to mutual knowledge
of the password ensure the equality of (possibly public or
adversary-controlled) tags that serve as additional input to
the protocol by both parties.

In our constructions 1 and 2, a secure TLS channel is
established first with no assumptions on correct validation
of certificates; then a tPAuth protocol is run within the TLS
channel to demonstrate mutual knowledge of the password
and absence of a man-in-the-middle attack on the TLS chan-
nel. Once tPAuth protocol succeeds, the parties continuewith
the exchange of the application data using the established
TLS session keys. Note that tPAuth is an authentication-
only protocol and not a full-fledged key exchange protocol,
i.e., tPAuth does not need to output any keys. In construc-
tion 1 tPAuth execution is bound to the TLS channel using
TLS transcript, whereas in construction 2 this binding is
performed using TLS server certificate. In construction 3
we replace tPAuth with a tPAKE protocol (which addition-
ally outputs its own session key) and let parties executes a

tPAKE session before establishing the TLS channel. How-
ever, before parties proceed with secure communication
using TLS session keys the computed tPAKE session key is
transmitted from the client to the server through the channel.
This step completes mutual authentication and guarantees
the absence of a man-in-the-middle attack on the TLS chan-
nel.

We observe that constructions 1 and 2 require modifi-
cations within the client’s user agent, while construction
3 can be implemented without changing the client’s user
agent but therefore needs assumptions on a functioning
domain name system (DNS) and PKI. Although this is obvi-
ously a drawback compared to the other two constructions
it still allows a binding between the confidential channel
and password-based authentication while preventing man-
in-the-middle attacks, which is a significant improvement
over HTML-forms-over-TLS. Thus, while constructions 1
and 2 offer strong security guarantees with minimal assump-
tions, construction 3 is more flexible in its deployment but
requires more assumptions. This can also be seen in Sect. 8
where construction 2 is implemented as Firefox extension
(i.e., integrated in the client’s user agent) and construc-
tion 3 as Android application (i.e., independently from the
browser).

Since the most suitable definition for the security of
the combined TLS handshake and record layer protocols
is the authenticated and confidential channel establishment
(ACCE) model of Jager et al. [29], in Sect. 3 we define a
corresponding password-based ACCE (PACCE) model and
apply it to the analysis of our constructions. Since ACCE
has been used to analyze many real-world protocols (e.g.,
SSH [12], EMV [16]), our PACCE model would also be
suitable for strong password-based variants of those proto-
cols. We prove that all our constructions are secure PACCE
protocols. In our analysis we generalize the underlying chan-
nel protocols that are used as building blocks to possess the
properties of an ACCE or an unauthenticated confidential

123

600 M. Manulis et al.

channel establishment (CCE). In this way we show that our
approach for password-based authentication of secure chan-
nels is applicable to a wider class of channel establishment
protocols.

Applicability of results to other approaches Our results,
by employing the CCE/ACCE frameworks, are generic and
could be applicable to constructions employing a wide vari-
ety of protocols, beyond the TLS. For example, our results
justify the general approach behind the proposals by Oiwa et
al.’ [7,36–38] and by Dacosta et al. [18]. We caution that our
theorems, which make use of security models for tPAuth and
tPAKE, do not immediately imply security of those particular
protocols.

Oiwa et al. adopt three channel binding mechanisms:
server’s TLS certificate, TLS master secret key, and for non
TLS-based connections server’s host string (e.g., http://www.
example.com:80). Our results on the use of TLS server cer-
tificate show that the underlying PAKEprotocolmust possess
tPAuth properties. This requirement also applies to the use of
TLSFinishedmessage. Since the TLS handshake will not
complete unless both parties compute the same Finished
messages, our results indirectly justify the binding based on
the TLS master secret key.

Dacosta et al.’s protocol [18] only provides server-to-
client password-based authentication, whereas our PACCE
constructions aim at mutual authentication of both parties.

Reference implementation In Sect. 8, we describe our ref-
erence implementations which are available for immediate
download:

Our first client-side implementation is a Firefox exten-
sion: it is a cross-platform Javascript-based bundle that can
be installed by the user at run-time, without any modifica-
tions to the source code of the Firefox browser or its TLS
library, Network Security Services (NSS). This implemen-
tation realizes the channel binding based on server’s TLS
certificate [9] that can be accessed through Firefox API. The
Javascript-based implementation provides tolerable perfor-
mance, with total round-trip time of around 300ms on a
laptop, including network latency. If realized in native C
using OpenSSL libraries, the total protocol execution time
can be reduced further to 180ms (at the cost of being non
cross-platform).

Our second client-side implementation is an Android
application, which can be directly installed by the user from
the Google Play store. This implementation binds to the
server’s domain name and requires <2.5 s for the protocol
to complete.

On the server side, our implementation is achieved entirely
as a cross-platform PHP application, which can be added at
run-time without any modifications to the source code of the
Apache web server or its TLS library, OpenSSL.

2 Approach

Our first general approach for secure modular password-
based authentication on the web that is realized in construc-
tions 1 and 2 is as follows:

1. Establish a secure (TLS) channel as normal inwebbrows-
ing.

2. Use a tag-based password authentication (tPAuth) pro-
tocol to perform secure authentication based on mutual
knowledge of the shared password, and mutual agree-
ment on a (possibly public) tag, which binds the tPAuth
protocol to the secure channel; the tag is either (i) the
transcript of the secure channel establishment (for TLS,
theFinishedmessage from the handshake, which con-
tains a hash of the transcript of the TLS handshake), or
(ii) the (hash of the) server’s certificate.

Our second general approach for modular password-based
authentication on the web that is realized in construction 3 is
as follows:

1. Establish a common session key between the client and
the server using a tag-based password-authenticated key
exchange (tPAKE) protocol with mutual authentication,
using the server’s domain name as tag to bind the session
key to this domain.

2. Establish a secure (TLS) channel as normal inwebbrows-
ing and send the session key from the client to the server.
The session key is used to authenticate the client.

From a theoretical perspective, we want to ensure that the
combination of tPAuth/tPAKEandTLSprotocols is secure—
in particular, that the password authentication is really bound
to the channel, so that an adversary cannot perform a man-
in-the-middle attack on the channel. We will provide formal
justifications for generic constructions using three different
channel binding strings: transcripts (construction 1), public
keys (construction 2), and domain names (construction 3).

For a practical implementation involving TLS, one also
needs to specify the format of messages and how they
are delivered. The messages can be delivered in any suit-
able format or medium: as HTTP authentication headers,
as a micro-format within HTML, or as appropriate in other
application-layer protocols. In particular, no modification
of TLS is required, beyond support in the application for
obtaining TLS channel binding information, which is already
partially supported by some web browsers and web servers.

In the remainder of this section, we will give an overview
of the theoretical building blocks, and their corresponding
practical realizations, then discuss how these building blocks
are combined to construct our main generic protocols.

123

http://www.example.com:80
http://www.example.com:80

Secure modular password authentication for the web using channel bindings 601

2.1 Building blocks

2.1.1 Channel establishment protocols

Since TLS provides both key establishment and secure
communications, it does not suffice to model it as just an
authenticated key exchange protocol; recent work by Jager
et al. [29] instead models TLS as an authenticated and confi-
dential channel establishment (ACCE) protocol. Here, there
are two stages to a protocol: a pre-accept stage, which corre-
sponds to the TLS handshake protocol, in which two parties
establish a shared session key, and a post-accept stage, which
corresponds to the TLS record layer protocol, in which they
use the established session key to provide confidentiality and
integrity of communications using authenticated encryption.
ACCE is quickly becoming the accepted security definition
for TLS, and recent work [30,31] has shown that many TLS
ciphersuites are ACCE-secure, including RSA-key-transport
and signed-Diffie–Hellman ciphersuites; and that ACCE can
be suitably modified for modeling TLS renegotiation [23].
These results of course depend on the implementation avoid-
ing flaws (such as the state machine attack [13]), and also
assume strong cryptographic primitives, such as strong RSA
or Diffie–Hellman parameters (which can be sidestepped in
some settingswith attacks like FREAK [13] andLogjam [6]).

In ACCE, parties are authenticated to each other based on
long-termpublic keys, eithermutually or server-only.Aswith
most models for authenticated key exchange, it is abstractly
assumed that these long-term public keys are distributed in
an authentic way and that parties always correctly map pub-
lic keys to the intended communication partner. Since in our
approach authentication will come from mutual knowledge
of a password, we can put aside the authentication aspects
of ACCE to derive the weaker notion of a confidential chan-
nel establishment (CCE) protocol, in which confidentiality
(and integrity) of the established channel is guaranteed only
for sessions in which the adversary was passive during the
handshake phase. CCE provides no entity authentication
guarantees.

Of course, every ACCE protocol is also a CCE protocol
when we lift the authentication requirement on the ACCE
protocol. This corresponds with how we will use TLS in
our construction. TLS does, when public keys are managed
and used properly, provide strong authentication based on
public keys, and (certain ciphersuites) can be proven to be
ACCE-secure. But, as we observed in the introduction, prac-
tice suggests we cannot rely on the web PKI to provide ideal
authentic distribution and mapping of public keys to identi-
ties. Thus, TLS can in practice be seen as a CCE protocol:
even though long-term public keys may be used in TLS, we
are not confident in their distribution, and thus we only take
TLS to provide CCE, rather than ACCE, security. A formal
definition of CCE security appears in Sect. 4.1.

2.1.2 Tag-based password authentication and key exchange

PAKE protocols provide secure mutual authentication based
on knowledge of a shared secret password and establish a
shared secret key that can be used for encryption. In our first
two constructions, we already have a session key from the
secure channel, so we only need a password authentication
(PAuth) protocol, not a full PAKE protocol (although little
computational effort is saved with just PAuth, as the public
key (typicallyDiffie–Hellman) operations that prevent offline
dictionary attacks are still required). In construction three
however we consider a full PAKE protocol that provides us
with a session key that is then used to authenticate the client.

We require tag-based password authentication proto-
col (tPAuth) and tag-based password-authenticated key-
exchange protocol (tPAKE), which will provide secure
mutual authentication (resistant to offline dictionary attacks)
based on knowledge of a shared secret password, and with
acceptance only if both parties use the same, possibly public,
auxiliary tag [21,28].

The formal definition of tPAuth and tPAKE security
appears in Sects. 4.2 and 6.1, respectively. In our refer-
ence implementation we use tSOKE a tagged version of the
Simple Open Key Exchange (SOKE) protocol [1] that is
described in Sect. 7; note that any tPAuth or tPAKE protocol
could be used in our generic constructions, and any PAKE
protocol can in fact be transformed into a tPAuth or tPAKE
protocol by hashing the original password with the tag and
using the result as a new password [21].

2.1.3 TLS channel bindings

To securely bind the password authentication protocol and
the used secure channel, we must incorporate some identifier
for the channel into the authentication protocol.

It is not enough to bind to just randomnonces, for example,
as a man-in-the-middle attacker can relay those. Conven-
tional cryptographic wisdom recommends that using the full
transcript of a protocol suffices for identifying the channel in
a binding way. However, since our goal is to accommodate
practical scenarios in which the ideal cryptographic tech-
niques cannot always be used, we must consider what other
mechanisms are available.

Channel bindings for TLS [9] are a standardized mecha-
nism for retrieving information from a TLS connection that
can be used to identify the connection. Three mechanisms
are provided, two of which are relevant to us:

– tls-unique: The binding string is “the first [(plain-
text)] TLS Finished message sent in the most recent
TLS handshake of the TLS connection being bound
to”, [9, Sect. 3.1], which corresponds to the client’s
Finished message to the server. This is computed as

123

602 M. Manulis et al.

PRF(ms, “client finished′′‖H(T)) where PRF
is the TLS pseudorandom function, ms is the TLS mas-
ter secret from which the session keys are derived, H
is a cryptographic hash function, and T is the tran-
script of the TLS handshake messages up to this point,
namely from ClientHello up to (but not including)
ChangeCipherSpec (excluding anyHello and non-
handshake messages).

– tls-server-end-point: The binding string is the
hash of the TLS server’s certificate.

Notably, TLS channel bindings do not change the TLS
protocol itself: all TLS protocol messages, ciphersuites, data
transmitted, and all other values are entirely unchanged.
Rather, TLS channel bindings expose an additional value to
the application that can be obtained locally, thereby requiring
minimal changes to TLS implementations. tls-unique
channel binding works with all TLS ciphersuites, whereas
tls-server-end-point only works with TLS cipher-
suites that employ certificate-based server authentication,
though these are most widely used in practice.

tls-server-end-point may be easier to deploy
on the server side since the server certificate is often fixed
for long periods, and thus more suitable for multi-server
architectures where for example an SSL accelerator han-
dles the TLS connection and then passes the plaintext onto
one of potentially many layers of application servers. tls-
server-end-point is also easily deployable on the
client side: for example, the Firefox extension API already
makes the server certificate, but not theFinishedmessage,
available.

Wewill see that in some sensetls-unique is a stronger
channel binding string, as when it is used we can achieve
security of our generic construction using only CCE security
of the TLS channel, whereas when tls-server-end-
point is used we rely on the stronger ACCE security notion
of TLS; in the end, both allow us to achieve our goal.

TLS keying material exporters [39] are another option for
binding to the TLS channel, as they allow an application to
obtain keying material derived from the master secret key for
a given label. However, TLS channel bindings appear to be
the preferred mechanism, and so we focus on them.

For our third construction, we deploy a different channel
bindingmechanism using the server’s domain name. Assum-
ing a properly functioning DNS and PKI this approach is
practically equivalent to the tls-server-end-point
binding but does not require a TLS session to be established.

The Triple Handshake Attack [14] shows that TLS chan-
nel binding via tls-unique and tls-server-end-
point are not secure when session resumption is allowed,
since an attacker can cause two distinct sessions to have the
same tls-unique binding value via resumption. In order
for the techniques proposed in Sects. 4 and 5 to be secure

when instantiatedwith TLS channel bindings, wemust either
disable session resumption or adopt the mitigations recom-
mended in [14, Sect. 7].Note that thiswork does not dealwith
security issues stemming from TLS implementation errors
or attacks on TLS outside the security model introduced for
ACCE in [29].

2.2 Three PACCE constructions

Our first generic PACCE protocol between a client C and
a server S from a tag-based password-based authentication
protocol and a secure channel protocol is illustrated inFig. 1a.
First, the channel establishment protocol (CCE or ACCE) is
run until it accepts. Then, using the established channel, the
two parties run a tPAuth protocol where the tag serves as
a binding value to the established channel; when the tPAuth
protocol accepts, then the parties accept in the overall PACCE
protocol, and can continue using this channel for secure com-
munication.Ourfirst two constructions inSects. 4 and5differ
only in the way the tPAuth is bound to the established chan-
nel: the tag is either the transcript of the channel protocol or
the long-term public key of the server.

Our second generic PACCE protocol between a client C
and a server S from a tag-based password-authenticated key
exchange protocol and a secure channel protocol is illustrated
in Fig. 1b. First, the tPAKE protocol is run to generate a
common session key k using the server’s domain name as a
tag. Then, after establishing a secure channel (ACCE), the
clientC sends the session key k to the server S to authenticate
the established channel.

We now describe the combination of a tPAuth proto-
col with TLS for constructions 1 and 2, as detailed in
Fig. 2. Client C and server S first establish a standard
TLS channel: that is, they execute a normal TLS hand-
shake, then exchange ChangeCipherSpec messages to
start authenticated encryption within the TLS record layer,
and then exchange their Finished messages for explicit
key confirmation. Once Finished messages are success-
fully exchanged, the parties continue using the authenticated
encryption mechanism of the TLS record layer to commu-
nicate messages of the tag-based password authentication
protocol tPAuth. In our first construction, this binding is
achieved by using a Finished message as the tag; note
that Finishedmessages depend on the (hash of the) entire
TLS handshake transcript. In our second construction, the tag
is the server’s certificate (which includes the server’s pub-
lic key) that was communicated by S in its Certificate
message of the TLS handshake. Upon successful completion
of the password authentication phase both parties continue
using session keys and authenticated encryption mechanism
of the established TLS channel for secure communica-
tion. This construction is realized as Firefox extension (cf.
Sect. 8.1).

123

Secure modular password authentication for the web using channel bindings 603

Fig. 2 Constructions 1 and 2—protocolmessage diagram forTLSwith
tunneled tPAuth protocol (using example messages of the tSOKE pro-
tocol in parentheses, where H is a hash function). TLS.tag is either

TLS.Finished orTLS.Certificate. † denotes optionalmessages
(the server’s TLS.Certificate is necessary if used as TLS.tag)

Construction 3 executes a tPAKE protocol with the tag
being the server’s domain name before establishing the TLS
channel over which the session key computed in tPAKE
is transmitted for binding purposes. This construction is
described in Fig. 6 (cf. Sect. 8.2) from the perspective of
our implementation for mobile browsers. Due to limitations
of mobile browsers and easier deployment, the client is split
into browser and application. We require a tPAKE protocol
(rather than tPAuth) in this construction, which is executed
between the mobile application and the server, in order to
receive a session key, which can then be used to authenti-
cate the TLS session between the mobile browser and the
server. This construction further requires a working public
key infrastructure that binds the domain name to the public
key, used for the TLS session.

In the following sections, we will show that the afore-
mentioned generic constructions, and hence their concrete

TLS-based instantiations from Figs. 2 and 6, provably lead
to the establishment of a secure password-based authenti-
cated and confidential channel (PACCE).

3 Password-authenticated confidential channels

The security goal for our main construction is that it be
a secure password-authenticated and confidential channel
establishment (PACCE) protocol, which is a new password-
based variant of the ACCE model of Jager et al. [29]. ACCE
seems to be the most suitable for describing the security
requirements of real-world secure channel protocols such as
TLS [23,29–31] and SSH [12], and so it is natural to adapt
it to the password setting.

A PACCE protocol is a two-party protocol that proceeds
in two stages: in the handshake stage both participants per-

123

604 M. Manulis et al.

form an initial cryptographic handshake to establish session
keys which are then used in the record layer stage to authenti-
cate and encrypt the transmitted session data.1 At some time
during execution, the parties may accept the session as being
legitimately authenticated, or reject. The main difference in
PACCE compared to the original ACCE model is the use of
passwords instead of long-term public keys for authentica-
tion.

At a high level, a PACCEprotocol is secure if the adversary
cannot break authentication, meaning it cannot cause a party
to accept without having interacted with its intended partner,
and cannot break the confidential channel, meaning it cannot
read or inject ciphertexts.

We consider the standard client-server communication
model where a party is either a client C or a server S. For
each client-server pair (C, S) there exists a corresponding
password pwC,S drawn from a dictionary D.

An instance of party U ∈ {C, S} in a session s is denoted
as �s

U . Each instance �s
U records several variables:

– �s
U .pid: the partner identity with which �s

U believes to
be interacting in the protocol session

– �s
U .ρ ∈ {init,resp}: the role of this instance in

the session, either initiator or responder. init(�s
U) and

resp(�s
U) denote �s

U ’s view of who the initiator and
responder are in the session, namely (U,�s

U .pid) when
�s

U .ρ = init, and (�s
U .pid, U) when �s

U .ρ = resp
– �s

U .T : a transcript composed of all messages sent and
received by the instance in temporal order

– �s
U .α ∈ {active,accept,reject}: the status of

this instance
– �s

U .k: the session key computed by this stage; ini-
tially set to empty ∅; when non-empty, it consists of
two symmetric keys �s

U .kenc and �s
U .kdec for encryp-

tion and decryption with some stateful length-hiding
authenticated encryption scheme [29] used to provide
confidentiality in the record layer stage. If �s

U .α =
accept, then �s

U .k �= ∅
– �s

U .b ∈ {0, 1}: a randomly sampled bit used in the
Encrypt oracle

Two instances �s
U and �s′

U ′ are said to be partnered if and

only if �s
U .pid = U ′, �s′

U ′ .pid = U , �s
U .ρ �= �s′

U ′ .ρ, and
their transcripts form matching conversations [29], denoted
�s

U .T ≈ �s′
U ′ .T .

1 In the original ACCE model, these stages were called the pre-accept
and post-accept stages, respectively. In PACCE, the parties may start
sending encrypted data before accepting, so we have renamed the stages
to handshake and record layer, which is suggestive of TLS, but of course
can be used to model any appropriate protocol.

The adversary A controls all communications and can
interact with parties using certain oracle queries. Normal
operation of the protocol ismodeled by the following queries:

– Sendpre(�s
U , m): This query is answered as long as

�s
U .k = ∅. In response the incoming message m is

processed by �s
U and any outgoing message which is

generated as a result of this processing is given to A.
Specialmessagesm = (init, U ′) andm = (resp, U ′)
are used to initialize the instance as initiator or responder,
respectively, and to specify the identity of the intended
partner U ′. Note that processing of m may eventually
lead to the end of the handshake stage, in which case�s

U
either computes �s

U .k and switches to the record layer
stage or terminates with a failure.

– Encrypt(�s
U , m0, m1,len,head): If �s

U .α �=
accept, then return ⊥. Otherwise, the processing of
this query is detailed below. The result depends on the
random bit b sampled by �s

U upon initialization, which
is used to decide which of the two input message m0

and m1 to encrypt using stateful length-hiding authenti-
cated encryption scheme Enc/Dec, whereby len is the
message length and head is the header. The experiment
maintains an encryption state ste, a counter us

U , and a list
Cs

U of ciphertexts for each instance.

1. (C (0), st (0)e) ←R Enc(�s
U .kenc,len,head, m0,

ste)
2. (C (1), st (1)e) ←R Enc(�s

U .kenc,len,head, m1,

ste)
3. If (C (0) = ⊥) or (C (1) = ⊥), then return ⊥
4. us

U ← us
U + 1

5. (Cs
U [us

U], ste) ← (C (�s
U .b), st

(�s
U .b)

e)

6. Return Cs
U [us

U]
– Decrypt(�s

U , C,head): The processing of this query is
detailed below. The experiment maintains a decryption
state std and a counter vs

U . WheneverAmounts an active
attack on encryption communication (by injecting new
ciphertexts, delivering modified ciphertexts, or changing
their delivery order), the flag phase is set; if the active
attack succeeds, the adversary effectively learns the hid-
den bit �s

U .b.

1. (U ′, s′) ← (U ′, s′), if there exists �s′
U ′ that is part-

nered to �s
U , or (0, 0) otherwise

2. vs
U ← vs

U + 1
3. If �s

U .b = 0, then return ⊥
4. (m, std) ← Dec(�s

U .kdec,head, C, std)

5. If vs
U > us′

U ′ or C �= Cs′
U ′ [vs

U] then phase ← 1
6. If phase = 1, then return m

Note that, compared with ACCE, we allow protocol mes-
sages to be sent on the encrypted channel: If �s

U .α =

123

Secure modular password authentication for the web using channel bindings 605

active, then the returned plaintext message m is
processed as a protocol message; the resulting outgo-
ing message m′ is encrypted using Encrypt(�s

U , m′, m′,
len(m′),head) and the resulting ciphertextC is returned
to A. Otherwise, when �s

U .α = accept, the output of
Decrypt is returned to A.

Furthermore, the adversary may obtain some secret informa-
tion:

– RevealSK(�s
U): Return �s

U .k
– Corrupt(C, S): Return pwC,S

Note that, compared with AKE models like the eCK model
[33] that use public key authentication, password-based
protocols cannot tolerate ephemeral key leakage while main-
taining resistance to offline dictionary attacks; hence, we do
not include an ephemeral key leakage query.

Definition 1 (PACCE security) An adversary A is said to
(t, ε)-break a PACCE protocol ifA runs in time t and at least
one of the following two conditions hold:

1. A breaks mutual authentication: When A terminates,
then with probability at least ε + O(n/|D|) where n is
the number of initialized PACCE instances there exists
an instance �s

U such that

(a) �s
U .α = accept, and

(b) A did not issue Corrupt(init(�s
U),resp(�s

U))

before �s
U accepted, and

(c) A did not issueRevealSK(�s
U) orRevealSK(�s′

U ′)

for any �s′
U ′ that is partnered to �s

U , and

(d) there is no unique instance �s′
U ′ that is partnered to

�s
U .

2. A breaks authenticated encryption: When A terminates
and outputs a triple (U, s, b′) such that conditions (a)–(c)
from above hold, then we have that

∣
∣
∣
∣
Pr

[

b′ = �s
U .b

] − 1

2

∣
∣
∣
∣
≥ ε + O(n/|D|).

APACCE protocol is (t, ε)-secure if there is noA that (t, ε)-
breaks it; it is secure if it is (t, ε)-secure for all polynomial t
and negligible ε in security parameter κ .

Observe that Definition 1 accounts for online dictionary
attacks against PACCE protocols by using a lower bound
ε + O(n/|D|) for the adversarial success probability, which
models A’s ability to test at most one password (or a con-
stant number) from the uniformly distributed dictionaryD in
a single session.

Remark 1 Our security definitions assume that passwords
are uniformly distributed over the dictionary D, which is a
commonly adopted assumption in game-based security mod-
els for cryptographic password authentication protocols. This
assumption does cover other password distributions that may
occur in practice.

4 PACCE construction 1: binding using CCE
transcript

Our first generic PACCE protocol �T := �T (π, ξ) is con-
structed as in Sect. 2.2 from a CCE protocol π and a tPAuth
protocol ξ where the tag τ used is the transcript T of the CCE
handshake stage. We will see that, because we are using the
full transcript from the channel establishment to bind the two
protocols together, we need not rely on any authenticity prop-
erties of the channel, and thus can use a CCE protocol, not
an ACCE protocol.

In this section, we give formal definitions of a CCE proto-
col and of tag-based password authentication, then prove the
security of this generic construction �T using the full tran-
script as a tag. Finally, we comment that security still holds
when we use a cryptographic hash of the transcript of the tag,
allowing us to justify the security of using TLS with tSOKE
and tls-unique channel binding.

4.1 Building block: CCE

As a building block in our analysis we use the notion of
confidential channel establishment (CCE) that differs from
(P)ACCE in that it is supposed to guarantee only confi-
dentiality (and integrity) of the established channel, but not
authentication of partners; hence, security is only assured for
sessions in which the adversaryA remains passive during the
handshake stage. We thus model CCE by slightly modifying
the PACCE model from Sect. 3.

The first difference is that there are no passwords nor iden-
tities involved; hence noCorrupt oracle is needed, nor is the
U ′ parameter required in the initialization in the Sendpre

query. Further, the security condition is adjusted so that only
sessions where the adversary was passive in the handshake
stage are considered. The oracles RevealSK, Encrypt and
Decrypt remain unchanged.The followingdefinition ofCCE
security is obtained from Definition 1 by considering the
above mentioned modifications.

Definition 2 (CCE security) An adversary A is said to
(t, ε)-break a CCE protocol ifA runs in time t and, whenA
terminates and outputs a triple (U, s, b′) such that

(a) �s
U .α = accept, and

(b) there exists an instance �s′
U ′ that is partnered to �s

U , and

123

606 M. Manulis et al.

(c) A did not issueRevealSK(�s
U) orRevealSK(�s′

U ′) for

any �s′
U ′ that is partnered to �s

U ,

then
∣
∣Pr

[

b′ = �s
U .b

] − 1
2

∣
∣ ≥ ε.

Every secure (P)ACCE protocol is also CCE-secure: if we
ignore the authentication aspects, then we still get confiden-
tial channel establishment in sessions where the adversary is
passive during the handshake.

4.2 Building block: tPAuth

Tag-based authentication [28] accounts for the use of
auxiliary, possibly public, strings (tags) in authentication
protocols—each party uses a tag, in addition to the authen-
tication factor, and the protocol guarantees that if parties
accept then their tags match. This concept was introduced
in [28] for public key-based authentication protocols and
then generalized in [21] for other types of authentication
factors, including passwords and biometrics. Our PACCE
constructions 1 and 2 will make use of a tag-based password
authentication (tPAuth) protocol.

The model of tPAuth can be described using the setting of
PACCE protocols from Sect. 3. A tPAuth session is executed
between a client instance �s

C and a server instance �s′
S on

input the corresponding password pwC,S from the dictionary
D and some tag τ ∈ {0, 1}∗. A tPAuth session is successful
if both instances use the same password pwC,S and tag τ

as their input. The requirement on tag equality leads to the
extended definition of partnering: two instances �s

C and �s′
S

are partnered if �s
C .pid = S, �s′

S .pid = C , �s
C .T ≈ �s′

S′ .T

(matching transcripts), and �s
C .τ = �s′

S .τ (equal tags).
A tPAuth adversaryA is active and interactswith instances

of U ∈ {C, S} using the following oracles:

– Send(�s
U , m): This query is identical to Sendpre from

the PACCEmodel except for one important difference—
when A initializes some instance �s

U using the special
messages m = (init, U ′, τ) or m = (resp, U ′, τ);
then, it additionally provides as input a tag τ which will
be used by the instance in the tPAuth session. This essen-
tially gives A full control over the tags that are used in
the protocol.

– Corrupt(C, S): Like in the PACCE model, this query
reveals the corresponding password pwC,S .

The security of tPAuth protocols, defined in the following,
extends the traditional password authentication requirement
that accounts for online dictionary attacks with the require-
ment of tag equality, which is implied by condition 3 due to
the extended definition of partnering.

Definition 3 (tPAuth security) An adversary A is said to
(t, ε)-break a tPAuth protocol if after the termination of A
that runs in time t with probability at least ε + O(n/|D|)
where n is the number of initialized tPAuth instances, there
exists an instance �s

U such that

1. �s
U .α = accept, and

2. Adidnot issueCorrupt(init(�s
U),resp(�s

U))before
�s

U accepted, and

3. there is no unique instance �s′
U ′ that is partnered to �s

U .

A tPAuth protocol is (t, ε)-secure if there is noA that (t, ε)-
breaks it; it is secure if it is (t, ε)-secure for all polynomial t
and negligible ε in security parameter κ .

In Sect. 7, we present tSOKE, a tag-based variant of
the Simple Open Key Exchange (SOKE) protocol from
[1]. Since SOKE is a PAKE protocol, its tag-based version
tSOKE also establishes a secure session key k. This key
will only be used in our PACCE construction 3, whereas
our PACCE constructions 1 and 2 will be using tSOKE as a
tPAuth protocol, that is only relying on its mutual authenti-
cation property.

4.3 Security analysis of PACCE construction 1

Theorem 1 (CCE + tPAuthτ=TCCE �⇒ PACCE) The
generic PACCE protocol construction �T (π, ξ) from a CCE
protocol π and a tPAuth protocol ξ , with the tag equal to the
transcript TCCE from the CCE handshake stage, is secure,
assuming the underlying protocols are secure.

The proof consists of a sequence of games. In the first
game, the simulator continues to simulate the CCE por-
tion of the protocol but undetectably replaces the tPAuth
simulation with that of a real tPAuth challenger. Next, the
simulator aborts if any of its instances accept without a part-
nered instance existing; this will correspond to a violation
of authentication in the underlying tPAuth challenger. In the
third game, the simulator now undetectably replaces the CCE
simulation with that of a real CCE challenger. An adversary
who can win against the resulting PACCE simulator can be
used to win against the underlying CCE challenger.

Proof Let �s
U .T = �s

U .TCCE‖�s
U .TtPAuth denote the CCE

handshake stage and (plaintext) tPAuth portions of the tran-
script of �s

U .
Game G0. This is the original PACCE security experiment
from Definition 1 played with a PACCE adversary A that is
given access to the oracles Sendpre, RevealSK, Corrupt,
Encrypt, and Decrypt.

In particular, the simulator B first initializes passwords
pwC,S for all pairs of parties (C, S). For every session�s

U of
the PACCEprotocol, the simulatorBwill maintain “shadow”

123

Secure modular password authentication for the web using channel bindings 607

sessions of the tPAuth protocol (�s
U) and CCE protocol

(�̂s
U). B activates the PACCE adversary A and responds to

queries by A as follows:

– Sendpre(�s
U , m): B emulates a call for the CCE proto-

colπ toSendpre(�̂s
U , m) to obtain an outgoingmessage

m′; note that calls from A to this oracle are rejected
once the CCE instance �̂s

U has accepted. When the CCE
instance �̂s

U accepts:
If �s

U .ρ = init, B constructs the first message m̂
of the tPAuth protocol ξ by emulating a call for ξ to
Send(�s

U ,init,�s
U .TCCE). Then, B encrypts m̂ by

emulating a call for π to Encrypt(�̂s
U , m̂, m̂,len(m̂),

head) to obtain a ciphertext Ĉ .
If �s

U .ρ = resp, B initializes the corresponding
instance of the tPAuth protocol ξ by emulating a call for
ξ to Send(�s

U ,resp,�s
U .TCCE). This does not return

anything.
B returns toA any outgoing CCE handshake message m′
as well as any encrypted tPAuth message Ĉ .

– RevealSK(�s
U): B returns the CCE session keys

�s
U .kenc and �s

U .kdec to A if �s
U .k �= ∅.

– Corrupt(C, S): B returns pwC,S to A.
– Encrypt(�s

U , m0, m1,len,head): If �s
U .α �=

accept, return ⊥. Otherwise, B emulates a call for the
CCE protocol π to Encrypt(�̂s

U , m0, m1,len,head)

and returns the result C to A.
– Decrypt(�s

U , C,head): If the CCE portion of the pro-
tocol π for this session is still in the handshake stage,
return ⊥. If the CCE portion is in the record layer stage
but�s

U .α �= accept, thenB emulates a call for theCCE
protocol π toDecrypt(�̂s

U , C,head) and processes the
resulting plaintext message m′ for the tPAuth protocol ξ
by emulating a call to Send(�s

U , m′). If �s
U accepts or

rejects, so too does �s
U . If �s

U returns a tPAuth protocol
message m′′, then B encrypts it by emulating a call to
Encrypt(�̂s

U , m′′, m′′,len(m′′),head) and returns the
resulting ciphertext C ′′ to A.
If the CCE portion is in the record layer stage and
�s

U .α = accept, then B emulates a call for the CCE
protocol π to Decrypt(�̂s

U , C,head) and returns the
result m′ to A.

Since B follows the original experiment exactly,

AdvPACCEA,�T (π,ξ) = AdvG0
A,�T (π,ξ)

. (1)

GameG1. In this game, the simulatorBmakes use of a chal-
lenger Cξ for the tPAuth protocol ξ to simulate the tPAuth
portion of the combined protocol. B will maintain a one-to-
one mapping between sessions �s

U of the PACCE protocol
and sessions �s

U of the tPAuth protocol. In particular, the
tPAuth challenger Cξ initializes passwords for all pairs of

parties. Then, the simulator B activates the PACCE adver-
sary A and responds to queries by A as in game G0, except
in Sendpre, Corrupt, and Decrypt: where it would have
emulated calls to the tPAuth protocol, it relays those calls
to Cξ . Since B’s use of the tPAuth challenger Cξ perfectly
matches how it would use ξ if it were implementing ξ itself,

AdvG0
A,�T (π,ξ)

= AdvG1
A,�T (π,ξ)

. (2)

Game G2. In this game, the simulator B acts as in game
G1, except that it aborts when there exists an instance �s

U
that accepts without having a partnered instance (i.e., if
�s

U .pid = U ′, then there does not exist an instance �s′
U ′

such that �s
U and �s′

U ′ have matching transcripts) and A
has not issued a Corrupt(init(�s

U),resp(�s
U)) query.

B’s behavior in game G2 is exactly the same as in game G1

except when this abort event occurs. Suppose the abort event
occurs because of instance �s

U . Let Since PACCE instance
�s

U accepted, the underlying tPAuth instance �s
U must also

have accepted; its transcript is �s
U .TtPAuth and it was initial-

ized on tag �s
U .TCCE.

However, no partner instance to �s
U exists: namely,

there is no PACCE instance with transcript T ′ = T ′
CCE‖

T ′
tPAuth matching �s

U .T . Now, either (i) there exists a
PACCE instance with T ′

CCE equal to �s
U .TCCE but not

with T ′
tPAuth matching �s

U .TtPAuth, or (ii) there is no other
PACCE instance with T ′

CCE equal to �s
U .TCCE. In case (i),

this means there exists a tPAuth instance initialized on tag
T ′
CCE = �s

U .TCCE but not with transcript T ′
tPAuth matching

�s
U .TtPAuth; thus, �s

U has no partnered instance, violating
condition 3 of Definition 3. In case (ii), this means there
does not exist any other tPAuth instance initialized on tag
�s

U .TCCE; thus, �s
U has no partnered instance initialized

with the same tag �s
U .TCCE, violating condition 3 of Defini-

tion 3. SinceB aborts only when the authentication condition
in the underling tPAuth protocol ξ is violated,
∣
∣
∣AdvG1

A,�T (π,ξ)
− AdvG2

A,�T (π,ξ)

∣
∣
∣ ≤ AdvtPAuthB,ξ . (3)

Game G3. In this game, the simulator B acts as in gameG2,
except it makes use of a challenger Cπ for the CCE protocol
π to simulate the CCE portions of the combined protocol.
B will maintain a one-to-one mapping between sessions �s

U
of the PACCE protocol and sessions �̂s

U of the CCE proto-
col. The simulator B activates the PACCE adversary A and
responds to queries byA as in gameG2, except in Sendpre,
RevealSK, andEncrypt, andDecrypt: where it would have
emulated calls to theCCEprotocol, it relays those calls to Cπ .
Since B’s use of the CCE challenger Cπ perfectly matches
how it would use π if it were implementing π itself,

AdvG2
A,�T (π,ξ)

= AdvG3
A,�T (π,ξ)

. (4)

123

608 M. Manulis et al.

Analysis of game G3. Suppose A outputs a tuple (U, s, b′)
that would win the PACCE experiment, namely �s

U .b = b′

and A did not query RevealSK(�s
U) or RevealSK(�s′

U ′)

for any partnered instance �s′
U ′ . Since in game G2 B would

have aborted if �s
U accepted without having a partnered

instance, there must exist some partnered instance �s′
U ′ .

Correspondingly, in Cπ there exists an instance �̂s
U with

partnered instance ̂

�s′
U ′ . Since A did not issue the prohib-

ited RevealSK queries, B also did not issue the prohibited
queriesRevealSK(�̂s

U) orRevealSK(�̂s
U). Thus, if B out-

puts (U, s, b′) to the CCE challenger Cπ , it will win the CCE
experiment whenever A wins the PACCE experiment:

AdvG3
A,�T (π,ξ)

= AdvCCEB,π . (5)

Final result Combining Eqs. (1)–(5),

AdvPACCEA,�T (π,ξ) ≤ AdvtPAuthB,ξ + AdvCCEB,π ,

and we obtain the security of the combined construction. ��

4.4 Using tls-unique channel binding

The tls-unique channel binding mechanism [9] can be
used to instantiate construction 1.

Recall fromSect. 2.1.3 that for tls-unique the channel
binding string is the first Finished message, which is the
output of a pseudorandom function on the hash of the TLS
handshake transcript.

It is straightforward to see that if the Finishedmessage
is used as the tag for channel binding instead of the full tran-
script in an analogous generic construction � f in(π, ξ), and
the hash function H is collision-resistant and the pseudoran-
dom function PRF is secure, then � f in is a secure PACCE.
This follows by noting that, except with negligible probabil-
ity, the parties must use the same transcript in order to arrive
at the same tag, and then the proof of Theorem 1 applies. This
assumes that session resumption is disabled (see Sect. 2.1.3)
to avoid the triple handshake attack [14].

5 PACCE construction 2: binding using server
public key

Our second generic PACCE protocol �pk := �pk(π, ξ) is
constructed as in Sect. 2.2 from an ACCE protocol π and
a tPAuth protocol ξ where the tag τ used is the long-term
public key used by the server in the ACCE protocol.

Because we are using only the server’s long-term public
key, and not the full transcript from the channel establish-
ment, to bind the two protocols together, we now must rely
on some authenticity properties of the channel. However, we

will not be relying on users to correctly validate the server’s
public key or decidewhich long-term server public key corre-
sponds with which password: from the external perspective,
the protocol is still a PACCE protocol, with authentication
only coming from passwords, not from long-term server pub-
lic keys.

In this section, we give a formal definition of a ACCE
protocol, then prove the security of this generic construction
�pk using the server’s long-term public key as a tag. Finally,
we comment that security still holdswhenwe use a certificate
or a hash of a certificate containing the public key, allowing
us to justify the security of using TLSwith tSOKE and tls-
server-end-point channel binding.

5.1 Building block: ACCE (with key registration)

ACCE [29] is currently themost completemodel for the secu-
rity properties of the core TLS protocol. We use a variant of
ACCE as a building block in our generic construction. The
first variation is that we allow for either server-only ormutual
authentication, as in Giesen et al. [23]; when server-only
authentication is used, only client instances are legitimate
targets for breaking authentication. The second variation is
in how static public keys are distributed. In typical AKE and
ACCEmodels, it is simply assumed that parties have authen-
tic copies of all static public keys, abstracting the problem
away. Since we will use ACCE as a building block under the
assumption that the “static” public keys are not to be trusted
as authentic, we allow the adversary to cause any public key
to be accepted as a static public key using a Register query;
only sessions where the key is not an adversary-registered
key are legitimate targets for breaking.

Formally, the differences between the ACCE model with
key registration, compared to the PACCE model, are as fol-
lows:

– There are no passwords and hence no need to consider
online dictionary attacks in the security definition.

– Each party U generates a long-term public-private key
pair (pkU , skU) and all parties, including the adversary,
are assumed to have copies of all long-term public keys.

– �s
U maintains a variable �s

U .ω ∈ {server−only,

mutual} indicating whether it is expecting server-only
or mutual authentication.

– �s
U maintains a variable �s

U .ppk of the public key
observed to be used by the peer.

– In the Sendpre query, the initialization messages no
longer specify the identity of the intended partner (this is
learned as the protocol runs), but do include the required
authentication mode.

– Register(pk): All parties add pk to the list of long-term
public keys.

– Corrupt(U): Returns skU .

123

Secure modular password authentication for the web using channel bindings 609

– Condition (b) of the security definition is:A did not issue
Corrupt(�s

U .pid) before �s
U accepted.

– For breaking authentication, an additional condition is
added:

(e) if �s
U .ω = server−only, then �s

U .ρ = init.

– For breakingboth authentication andauthenticated encryp-
tion, an additional condition is added:

(f) A did not issue Register(�s
U .ppk).

5.2 Security analysis of PACCE construction 2

Theorem 2 (ACCE + tPAuthτ=pk �⇒ PACCE) The
generic PACCE protocol construction �T (π, ξ) from an
ACCE protocol π and a tPAuth protocol ξ , with tag set to
the server’s public key pk from the ACCE handshake stage,
is secure, assuming the underlying protocols are secure.

The strategy of the proof is similar to that of Theorem 1.
In the first game, the simulator simulates the ACCE por-

tion of the protocol and undetectably replaces the tPAuth
portion using messages that it obtains from a real tPAuth
challenger. Next, the simulator aborts if any of its instances
accept without an instance whose tPAuth transcripts and the
input tags match, which corresponds to an attack against the
tPAuth protocol. In the third game, the simulator will use
messages obtained from a real ACCE challenger such that it
can use any adversary whowins against the resulting PACCE
simulator to break the security of the ACCE protocol; when
the adversary uses its own long-term public keys (which is
allowed since they are not authenticated), we use the key reg-
istration functionality of the (modified) ACCE challenger.

Proof GameG0. This is the original PACCE security exper-
iment from Definition 1 played with a PACCE adversary
A that is given access to the oracles Sendpre, RevealSK,
Corrupt, Encrypt, and Decrypt. It thus proceeds identical
to G0 from the proof of Theorem 1 except for the following
modifications sinceπ is nowanACCEprotocol. In particular,
the simulator B additionally needs to generate all long-term
public key / secret key pairs (pkU , skU) that are used in π .
Since B follows the original experiment exactly,

AdvPACCEA,�T (π,ξ) = AdvG0
A,�T (π,ξ)

. (6)

GameG1. In this game, the simulatorBmakes use of a chal-
lenger Cξ for the tPAuth protocol ξ to simulate the tPAuth
portion of the combined protocol. B maintains a one-to-one
mapping between sessions �s

U of the PACCE protocol and
sessions �s

U of the tPAuth protocol. In particular, the tPAuth
challenger Cξ initializes passwords for all pairs of parties.
Then, the simulator B runs the PACCE adversary A and
responds to its queries as in game G0, except in Sendpre,

Corrupt, and Decrypt: where it would have emulated calls
to the tPAuth protocol, it relays calls to Cξ . Since B’s use of
the tPAuth challenger Cξ perfectly matches how it would use
ξ if it were implementing ξ itself,

AdvG0
A,�T (π,ξ)

= AdvG1
A,�T (π,ξ)

. (7)

Game G2. In this game, the simulator B acts as in gameG1,
except that it aborts when there exists an instance �s

U that
used some public key pk as an input tag to the tPAuth part
of the protocol and accepted with the corresponding tPAuth
transcript �s

U .TtPAuth but for which there exists no instance

�s′
U ′ = �s

U .pid with the matching tPAuth transcript and tag
and A has not issued a Corrupt(init(�s

U),resp(�s
U))

query. Note that, other than this abort event, B’s behavior in
game G2 is exactly the same as in game G1, i.e., B gener-
ates (pkU , skU) itself and answers all queries ofA related to
ACCE protocol part on its own. The occurrence of this abort
event would violate condition 3 of tPAuth security fromDef-
inition 3, thus

∣
∣
∣AdvG1

A,�T (π,ξ)
− AdvG2

A,�T (π,ξ)

∣
∣
∣ ≤ AdvtPAuthB,ξ . (8)

The consequence of this game is that if no abort event takes
place when for every PACCE instance �s

U that accepts there

must exist an instance �s′
U ′ with which the tPAuth proto-

col part was securely executed. Since this game implies the
equality of the input tags used by �s

U and �s′
U ′ it therefore

also excludes the case where the public key pk used as the
input tag by �s

U was maliciously generated by the PACCE
adversary A. In other words, any PACCE instance �s

U that
accepts in this game must have used any of the public keys
pk that were generated honestly by the simulator B.
Game G3. In this game, the simulator B acts as in gameG2,
except it makes use of a challenger Cπ for the ACCE protocol
π to simulate theACCEportions of the combined protocol.B
will maintain a one-to-one mapping between sessions�s

U of
the PACCE protocol and sessions �̂s

U of the ACCE protocol.
The simulator B receives public keys pkU from Cπ , acti-

vates the PACCE adversary A, and responds to the queries
by A as in game G2, except that its replies to RevealSK,
Encrypt, and Decrypt oracles are obtained by first forward-
ing those queries to Cπ and passing on the responses back
toA. Also Sendpre queries ofA are answered using corre-
sponding queries to Cπ except for the case where the query
Sendpre queries ofA contains an ACCE public key pk that
is different from the public keys that B received from Cπ ; in
which case B first needs to issue a Register(pk) query to
Cπ . This offers perfect simulation of the ACCE part of the
combined protocol so that

AdvG2
A,�T (π,ξ)

= AdvG3
A,�T (π,ξ)

. (9)

123

610 M. Manulis et al.

Analysis of game G3. Suppose A outputs a tuple (U, s, b′)
and wins in the PACCE experiment. According to Definition
1 A can win if one of the following two conditions is sat-
isfied: either A breaks the authentication in the pre-accept
phase of the PACCE protocol as per condition 1 orA breaks
the authenticated encryption in the post-accept phase as per
condition 2.

First assume A wins by condition 1. In this case there
exists an instance �s

U that has accepted without having a

partnered instance �s′
U ′ . Game G2 guarantees that for any

�s
U that accepts in PACCE there must be an instance �s′

U ′
with matching tPAuth transcript and input tag (ACCE public
key pk). Hence, the only possibility for A to win by condi-
tion 1 in G3 is when the ACCE transcripts of �s

U and �s′
U ′

do not match. However, since both parties must have used
an honestly generated public key pk as tag (this is implied
by G2), any mismatch in their ACCE transcript parts would
contradict the assumed security of the underlyingACCE pro-
tocol.

Assume now that A wins by condition 2. In this case the
output (U, s, b′) of A would also break the authenticated
encryption security of the ACCE protocol. Hence, if B out-
puts (U, s, b′) to the ACCE challenger Cπ , it will win the
ACCE experiment wheneverAwins the PACCE experiment.
Thus,

AdvG3
A,�T (π,ξ)

= AdvACCEB,π . (10)

Final result. Combining Eqs. (11)–(10),

AdvPACCEA,�T (π,ξ) ≤ AdvtPAuthB,ξ + AdvACCEB,π ,

and we obtain the security of the combined construction. ��

5.3 Using tls-server-end-point channel binding

The tls-server-end-point channel binding mecha-
nism [9] can be used to instantiate construction 2.

Recall from Sect. 2.1.3 that for tls-server-end-
point the channel binding string is the hash of the server’s
X.509 certificate. Note that the certificate contains the
server’s public key as a canonically identifiable substring.

It is straightforward to see that if the hash of the certificate
is used as the tag for channel binding instead of the rawpublic
key in an analogous generic construction �cert (π, ξ), and
the hash function is second-preimage-resistant, then �cert

is a secure PACCE. This follows by noting that an active
adversary must use a certificate that hashes to the same value
as the server’s certificate, and then incorporating that as an
additional game hop in the proof of Theorem 2. This assumes
that session resumption is disabled (see Sect. 2.1.3) to avoid
the triple handshake attack [14].

6 PACCE construction 3: binding using server
domain name

Our third generic PACCE protocol �S := �S(ξ, π) is con-
structed as in Fig. 1b from a tPAKE protocol ξ where the
tag τ used is the server domain name S followed by an
ACCE protocol π that uses the server’s long-term public
key pkS . In particular, client and server first run a tPAKE
protocol on input of the client’s password and the server’s
domain name as tag. After successful completion of tPAKE,
client and server establish a secure channel using an ACCE
protocol that is then used to authenticate the client using
the key exchanged with tPAKE before. For a more concrete
description, we refer to Fig. 6. Because we are using only
the server’s domain name, and not the public key, to bind the
two protocols together, we now must rely on the authenti-
cated distribution of public keys.

6.1 Building block: tPAKE

Weexpand the tPAuthmodel and its security definitions from
Sect. 4.2 toward tPAKE protocols that in addition to authen-
tication allow the participating tPAKE instances �s

U with
the accept status to derive a secure session key �s

U .k. We
define an additional oracle Testb that is parameterized with
a random bit b and can be queried by a tPAKE adversary A
multiple times:

– Testb(�s
U): The oracle generates a response only if

�s
U .α = accept and A did not ask

Corrupt(init(�s
U),resp(�s

U)) before �s
U reached

that status. If b = 1 the oracle responds with the real
key �s

U .k. If b = 0 the oracle checks whether there

exists an instance �s′
U ′ that is partnered with �s

U and for
which a random key k was generated in response to a
Testb query and if so returns that k; otherwise, the oracle
responds with a new random key k.

The security definition of tPAKE protocols extends those for
tPAuth protocols toward the indistinguishability property for
the session keys.

Definition 4 (tPAKE security) An adversary A is said to
(t, ε)-break a tPAKE protocol ifA runs in time t and at least
one of the following conditions hold:

1. A breaks mutual authentication: When A terminates,
then with probability of at least ε+O(n/|D|) there exists
an instance �s

U for which the conditions 1–3 from Defi-
nition 3 hold.

2. A breaks key indistinguishability: When A terminates
and outputs bit b′ such that conditions 1-2 from Defini-
tion 3 hold, then we have that

123

Secure modular password authentication for the web using channel bindings 611

∣
∣
∣
∣
Pr

[

b′ = b
] − 1

2

∣
∣
∣
∣
≥ ε + O(n/|D|).

A tPAKE protocol is (t, ε)-secure if there is noA that (t, ε)-
breaks it; it is secure if it is (t, ε)-secure for all polynomial t
and negligible ε in security parameter κ .

The following lemma establishes a relationship between
tPAKE and tPAuth protocols.

Lemma 1 (tPAKE �⇒ tPAuth) Any (t, ε)-secure tPAKE
protocol is also a (t, ε)-secure tPAuth protocol.

Proof This lemma follows directly by inspection of the cor-
responding security definitions. In particular, condition 1 for
the security of tPAKE protocols from Definition 4 implies
conditions 1–3 for the security of tPAuth protocols fromDef-
inition 3. ��

As a tPAKE instantiation we will use tSOKE, the tag-
based version of theSOKEprotocol.While our constructions
1 and 2 were only relying on the authentication properties of
tSOKE, our construction 3 also makes use of the session key
that can be derived from the pre-master key k computed in
tSOKE.

6.2 Building block: ACCE (without key registration)

Because the tPAKE protocol will be executed first and uses
solely the domain name S as the input tag, the server’s public
key pkS must be validated within the ACCE protocol. This
means that the ACCE adversaryA from Sect. 5.1 is no longer
given access to the Register(pk) query and condition (f)
which relates to this query in the definition of ACCE security
must be removed. That is, by using the server’s domain name
as the tag, we require stronger authenticity guarantees on the
distributed public keys utilized in the ACCE protocol than in
construction 2.

6.3 Security analysis of PACCE construction 3

Theorem 3 (tPAKEτ=S + ACCE �⇒ PACCE) The
generic PACCE protocol construction �S(ξ, π) from a
tPAKE protocol ξ with tag set to the server’s domain name
S and an ACCE protocol π that uses the server’s public key
pkS, is secure, assuming the underlying protocols are secure.

Proof GameG0. This is the original PACCE security exper-
iment from Definition 1 played with a PACCE adversary
A that is given access to the oracles Sendpre, RevealSK,
Corrupt, Encrypt, and Decrypt. It thus proceeds identical
to G0 from the proof of Theorem 2. In particular, the sim-
ulator B additionally needs to generate all long-term public
key / secret key pairs (pkU , skU) that are used in π . Since B
follows the original experiment exactly,

AdvPACCEA,�S(ξ,π) = AdvG0
A,�S(ξ,π)

. (11)

Game G1. In this game, the simulator B makes use of a
challenger Cξ for the tPAKE protocol ξ to simulate the
tPAKE portion of the combined protocol and the tPAKE
key k that is sent over the ACCE channel. In particular, B
maintains a one-to-one mapping between sessions �s

U of
the PACCE protocol and sessions �s

U of the tPAKE proto-
col. The tPAKE challenger Cξ initializes passwords for all
pairs of parties. The simulator B runs the PACCE adver-
sary A and responds to its queries as in game G0, except in
Sendpre,Corrupt, andDecrypt: where it would have emu-
lated calls to the tPAKE protocol, it relays calls to Cξ . The
simulator B aborts when there exists an instance �s

U that
used some domain name S as an input tag to the tPAKE part
of the protocol and accepted with the corresponding tPAKE
transcript �s

U .TtPAKE but for which there exists no instance

�s′
U ′ = �s

U .pid with the matching tPAKE transcript and tag
and A has not issued a Corrupt(init(�s

U),resp(�s
U))

query. If the simulator does not abort, it continues with the
execution of theACCEportionπ for a PACCE session�s

U as
in previous game G0, except that it obtains tPAKE key k by
querying Testb(�s

U) to the corresponding tPAKE challenger
Cξ .

The use of the tPAKE challenger Cξ for the tPAKE
portion of the PACCE protocol perfectly matches how the
simulator B would use ξ if it were executing ξ itself.
The occurrence of the abort event would violate con-
dition 1 of tPAKE security from Definition 4, whereas
the ability of PACCE adversary A to distinguish between
G0 and G1 based on the usage of either real or ran-
dom tPAKE key k would violate condition 2. Therefore,

∣
∣
∣AdvG0

A,�S(ξ,π)
− AdvG1

A,�S(ξ,π)

∣
∣
∣ ≤ AdvtPAKEB,ξ . (12)

The consequence of this game is that if no abort event
takes place, then for every PACCE instance �s

U that accepts

there must exist an instance �s′
U ′ with which the tPAKE pro-

tocol part was securely executed. Since this game implies
the equality of the input tags used by �s

U and �s′
U ′ it there-

fore also excludes the case where the domain name S used
as the input tag by �s

U was not matching the public key
pkS used in the ACCE portion of the protocol, following the
assumption that public keys are distributed honestly. In other
words, any PACCE instance �s

U that accepts in this game
must have used the domain name S and the corresponding
public key pkS that was generated honestly by the simulator
B.
Game G2. In this game, the simulator B acts as in game
G1, except it makes use of a challenger Cπ for the ACCE
protocol π to simulate the ACCE portions of the combined
protocol. In particular,Bwill maintain a one-to-onemapping

123

612 M. Manulis et al.

between sessions �s
U of the PACCE protocol and sessions

�̂s
U of the ACCE protocol. The simulator B receives public

keys pkU from Cπ , activates the PACCE adversary A, and
responds to the queries by A as in game G1, except that
its replies to Sendpre, RevealSK, Encrypt, and Decrypt
oracles are obtained by first forwarding those queries to Cπ

and passing on the responses back to A. This offers perfect
simulation of the ACCE part of the combined protocol so
that

AdvG1
A,�S(ξ,π)

= AdvG2
A,�S(ξ,π)

. (13)

Analysis of game G2. Suppose A outputs a tuple (U, s, b′)
and wins in the PACCE experiment. According to Definition
1 A can win if one of the following two conditions is sat-
isfied: either A breaks the authentication in the pre-accept
phase of the PACCE protocol as per condition 1 orA breaks
the authenticated encryption in the post-accept phase as per
condition 2.

First assume A wins by condition 1. In this case there
exists an instance �s

U that has accepted without having a

partnered instance �s′
U ′ . Game G1 guarantees that for any

�s
U that accepts in PACCE there must be an instance �s′

U ′
with matching tPAKE transcript and input tag (domain name
S). Hence, the only possibility for A to win by condition
1 in G2 is when the ACCE transcripts of �s

U and �s′
U ′ do

not match. However, since both parties must have used an
honestly generated public key pkS as tag (this is implied
by G1) any mismatch in their ACCE transcript parts would
contradict the assumed security of the underlyingACCE pro-
tocol.

Assume now that A wins by condition 2. In this case the
output (U, s, b′) of A would also break the authenticated
encryption security of the ACCE protocol. Hence, if B out-
puts (U, s, b′) to the ACCE challenger Cπ , it will win the
ACCE experiment wheneverAwins the PACCE experiment.
Thus,

AdvG2
A,�S(ξ,π)

= AdvACCEB,π . (14)

Final result. Combining Eqs. (11)–(14),

AdvPACCEA,�S(ξ,π) ≤ AdvtPAKEB,ξ + AdvACCEB,π ,

and we obtain the security of the combined construc-
tion.

7 tSOKE: A tag-based password authentication
protocol with optional session key derivation

To achieve secure password authentication, we make use of
a tagged version tSOKE of the Simple Open Key Exchange

(SOKE) variant [1],which in turn builds on theSimplePAKE
(SPAKE) protocol [5], standardized in [25].

The tagged version tSOKE, used in our implementations,
is specified in Fig. 3. The system parameters consist of an
elliptic curve group (which we fix to be the NIST P-192
group [35]) and a second generator G ′ constructed verifi-
ably at random. We use PBKDF2 for password hashing and
SHA-256 as a (concrete) hash function, modeled as a ran-
dom oracle.

In the registration stage, the user selects a password
pwC,S , hashes it along with a random salt, using the
PBKDF2 iterated construction, and gives salt, counter c,
and the password hash h to the server to store. In the login
stage, the user inputs pwC,S , reconstructs the password hash
h using PBKDF2, and the client and server together employ
a masked Diffie–Hellman key exchange to compute the ses-
sion key k and demonstrate mutual knowledge of the hashed
password, along with a tag τ .

In general, the main difference between tSOKE and
SOKE is that the tag τ is used in the computation of the
pre-master key pmk ← SHA-256(idC , h, τ , X , Y ∗, Z)

where idC is the client’s username, h is the password hash,
τ is the tag, X and Y ∗ are exchanged (masked, in the case of
Y ∗) Diffie–Hellman public keys, and Z is theDiffie–Hellman
shared secret. Notably, the tag need not be used in the mask-
ing of the Diffie–Hellman public key; the masking operation
is used to protect the secret password from offline dictionary
attacks, and since the tag need not be kept secret, it only needs
to appear in the computation of pmk. Recall that parties sub-
sequently demonstrate knowledge (and check for equality) of
the pmk to each other by exchanging authentication values
A1 and A2.

Our PACCE constructions 1 and 2 rely only on the
password authentication property of tSOKE, for which the
mutual authentication aspects are used. In particular, the
derivation of the session key k can be omitted by partici-
pants in those PACCE constructions. In contrast, our PACCE
construction 3 requires tSOKE participants to compute the
session key k. The following theorem proves that tSOKE
is a secure tPAKE protocol, and by Lemma 1 also a secure
tPAuth protocol.

Theorem 4 tSOKE is a secure tPAKE protocol, assuming
that SHA-256 behaves like a random oracle.

Proof We prove this theorem by closely following the game-
hopping proof of [1, Theorem5.1]which states that assuming
that SHA-256 is modeled as a random oracle, the original
SOKE protocol is a secure PAKE protocol according to the
security definitions from [4]. There are two main issues with
regard to the proof of [1, Theorem5.1] thatweneed to address
in order to prove that tSOKE is a secure tPAKE protocol
according to Definition 4.

123

Secure modular password authentication for the web using channel bindings 613

Fig. 3 tSOKE protocol registration and login stages

First, in tSOKE there is no derivation of the secret
KeyBlock that was computed in SOKE using a pseudo-
random function PRF, while the derivation of the
MasterSecret, denoted by k in Fig. 3 is still in place.
The security of these derivation steps for SOKE in the proof
of [1, Theorem 5.1] was addressed in two games, namely

G2 that showed that collisions for the two derived secrets
may happen only with negligible probability according to
the birthday paradox and G6 that addressed the security of
the pseudo-random functionPRF by replacing it with the ran-
dom function. Since gameG2 also dealt with collisions of the
protocol transcripts we still need this game to prove the secu-

123

614 M. Manulis et al.

Fig. 4 User interface for Mozilla Firefox extension: a Login notification bar. b Login dialog box. c Login success notification bar. d Login failure
notification bar

rity of tSOKE, but the (negligible) probability distance to
the gameG1 becomes now even smaller (by the amount that
corresponds to the collision probability for the two secrets
MasterSecret and KeyBlock). In contrast, the game
G6 is now modified to take into account that k is derived
using a random oracle (rather than a PRF). This change has
no further impact since random oracle was used in SOKE to
derive the PreMasterSecret, denoted by pmk in Fig. 3.

The second and perhaps more important difference is that
we additionally need to argue that a successful tSOKE ses-
sion between a client and a server guarantees the equality
of input tags τ for both parties in case any of them accepts
(as required by Definition 4). Observe that the input tag τ is
processed in tSOKE as an additional input to the hash func-
tionSHA-256 in the computation of pmk. The original game
G2 in the proof of [1, Theorem 5.1] that treats SHA-256 as
a random oracle and excludes collisions using the birthday
paradox therefore also implies the required equality of tags.

8 PACCE implementations for desktop and mobile
browsers

As an important motivation for our modular protocol design
was the ability to modularly implement the protocol, we pro-
duced two prototypes to demonstrate this. For the tag-based
password authentication protocol, we used the previously
described tSOKE, a tag-based version of theSOKE protocol
[1], a highly efficient Diffie–Hellman-based PAKE. We also
used the NIST P-192 elliptic curve group [35].

The client side of the protocol was implemented in two
variants. The first version is an extension for Mozilla Firefox
(320 lines of custom JavaScript, plus libraries), and the sec-
ond implementation is an Android application (770 lines of
custom Java and 182 lines ofXML, plus libraries). The server
side of the protocol was implemented as a PHP application
(210 lines of custom PHP code, plus libraries) that can run on

an Apache web server. No modifications to the source code
of the underlying web browser (Firefox or mobile browser)
or the underlying web server (Apache with OpenSSL) were
required—in particular, we did not have to alter the SSL/TLS
implementation and we did not have to recompile Firefox,
the mobile browser or Apache. Since the mechanism that
the server code uses to obtain the certificate of the TLS
connection is an Apache CGI (Common Gateway Interface)
variable, any server-side language would work, not just PHP.
In the following we describe the two different clients and the
server implementation more in detail. The implementation
is available online under an open-source license at https://
www.franziskuskiefer.de/pow/.

8.1 PACCE implementation for desktop browsers

8.1.1 Client: firefox extension

The client-side Firefox extension is written in JavaScript and
uses an existing Firefox API to obtain the certificate of the
TLS connection. The client implementation of our protocol
(excluding underlying cryptographic primitives) is just 320
lines of JavaScript code. Cryptographic operations can be
done in either pure JavaScript (relying on about 1400 lines
of code from Wu’s JavaScript elliptic curve cryptography
and big integer arithmetic implementation2 and about 6KB
of minified JavaScript from the Stanford Javascript Crypto
Library3 for the PBKDF2 algorithm) or can make use of
native C OpenSSL libraries using Firefox’s js-ctypes API4.

When the extension detects (using an appropriate trig-
gering mechanism; see Sect. 8.4) a page that supports the
protocol, it displays a notification bar that secure password
authentication is supported (Fig. 4a). The user then clicks on

2 http://www-cs-students.stanford.edu/~tjw/jsbn/.
3 http://crypto.stanford.edu/sjcl/.
4 https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes.

123

https://www.franziskuskiefer.de/pow/
https://www.franziskuskiefer.de/pow/
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://crypto.stanford.edu/sjcl/
https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes

Secure modular password authentication for the web using channel bindings 615

the “Login” button in the notification bar to bring up the pass-
word entry dialog box (Fig. 4b). Note that the notification
bar is displayed using Firefox API for notifications, simi-
lar to how alerts are rendered for missing plugins. By using
the standard notification mechanism, we provide a trusted
UI path to the notification bar, and then, through the login
button on that bar, a trusted UI path to the dialog box, some-
what mitigating concerns about the difficulty of providing
a trusted UI path in browser-based secure password authen-
tication [19,20]. The status of the mutual authentication is
displayed in the notification bar (Fig. 4c, d); if successful,
the browser is redirected to the URL indicated by the server.

At present, Firefox is the only web browser we examined
whose extension APIs offer partial implementation of the
channel bindings for TLS from RFC 5929 [9], providing
access to the certificate of the page’s TLS connection. The
APIs for Google Chrome and Apple Safari extensions do
not seem to permit this ability so far, nor does the API for
Microsoft Internet Explorer browser toolbars. However, our
modular approach is still valid, in that Chrome, Safari, and IE
would only need to implement the recommendations from [9]
such that our extension could do the rest of the protocol, rather
than requiring the full protocol be implemented within the
core browser source code as many other approaches require.
Alternatively an approach similar to the mobile architecture
with a standalone application could be implemented, which
does not require any such API (cf. Sect. 8.2).

Branding Our prototype allows the server to specify some
limited “branding” customizations to the login dialog box,
including displaying a logo and explanatory text, as can be
seen in Fig. 4b. A common objection to server-specified
branding is that the protocol becomes insecure due to phish-
ing attacks: while it is true that an attacker could put in a
different logo or text in Fig. 4b, the attacker gains nothing
in doing so: the protocol cryptographically protects the pass-
word, even when the user’s browser runs the protocol with
attacker’s server. At best, the attacker can interrupt commu-
nication, but will gain no information. Our limited branding
does not give the attacker enough power to completely spoof
the user interface and trick the user into using the attacker’s
own dialog box, due to the trusted UI path via the browser
notification bar.

In addition to branding, personalization can be used to
help prevent UI spoofing attacks. We give more details on
personalization and its benefits in Sect. 8.2 where it is also
implemented. (See Sect. 9 for further discussion of spoofing
attacks.)

8.1.2 Server: PHP application

The server-sidePHPapplicationuses an existingApacheCGI
variable ($_SERVER[’SSL_SERVER_CERT’]) to obtain

the certificate of the TLS connection. (If this variable is not
available the certificate can also be hard coded or read from
the certificate file directly.) The server implementation of
our protocol is just 210 lines of PHP code. Cryptographic
operations can be done either in PHP (relying on Danter’s
PHP elliptic curve cryptography implementation5) using pre-
packaged PHP extensions for big integer arithmetic, or can
make use of native C OpenSSL libraries.

8.2 PACCE implementation for mobile browsers based
on Android application

8.2.1 Client: Android application

The second prototype is implemented as an Android applica-
tion according to construction 3 and allows the use of PACCE
with any browser on Android devices. Figure 1b depicts the
high-level architecture of the mobile implementation of con-
struction 3. We start with a description of the protocol used
by the prototype, detailed in Fig. 6. The message flow in the
figure splits the client into the browser application and the
appused to perform the cryptographic operations.Weassume
that communication between those two applications is pri-
vate, i.e., no attacker is able tomodifymessages or eavesdrop
on the communication.

The user is presented with a common HTML button to
trigger the login mechanism when visiting a website. When
requesting the login form a special URL with setup parame-
ters to open the Android application is returned instead of
an HTML login form. The parameters include in particular
the server domain that is used by the application to perform
the tSOKE protocol. The application presents a trusted login
form to the user who enters his username and password and
starts the login process.

Similar to the Firefox extension the Android applica-
tion uses provided branding information (icon and URL) to
enhance user experience by displaying them in the action
bar on top of the login form. Android application and
server now run the tSOKE protocol as described before.
The cryptographic operations in the Android application are
implemented using SpongyCastle6, a repackage of Bouncy-
Castle7 for Android. Client and server compute the same
session key if and only if they use the same password and
domain in tSOKE. The session key, generated with tSOKE,
is used to open the browser with the same domain it used to
perform the tSOKE protocol. This authenticates the browser
session to the server. The server accepts the browser session
if and only if the browser is the one used to open the login

5 https://github.com/mdanter/phpecc/.
6 https://rtyley.github.io/spongycastle/.
7 http://www.bouncycastle.org/java.html.

123

https://github.com/mdanter/phpecc/
https://rtyley.github.io/spongycastle/
http://www.bouncycastle.org/java.html

616 M. Manulis et al.

Fig. 5 User interface of Android Application with personalization

application and if the browser is able to provide the cor-
rect session key. (Common cookie techniques can be used to
ensure security of this handover.)

Personalization against UI spoofing As mentioned previ-
ously, a trusted path and branding is not enough to tackle
more sophisticated UI spoofing attacks. A malicious web-
site may for example rebuild the user interface of the trusted
input (Firefox extension or Android application) to fool the
user in assuming he is using a trusted input and secure login
mechanism. To tackle UI spoofing and usage of malicious
applications, the Android application deploys an additional
mechanism, personalization. On the first start of the appli-
cation, the user is prompted to choose an image from phone
or online storage, which is then shown below the login form
to personalize the application (see Fig. 5). Every subsequent
use of this application is secured by this personalized image
that can not be easily spoofed by an attacker. In particular,
users should not proceed with the login process if they do
not see the image they have chosen on first use.

8.2.2 Server: PHP application

The server is essentially the same as the previously described
PHP server with some minor modifications. First, the server

computes authentication tokens and the session key k in
tSOKE (recall that construction 3 uses tSOKE as a tPAKE
protocol). Further, as described in construction 3, the tag used
in tSOKE is the server’s domain name. The session key com-
puted in tSOKE is used by the application to call the server
via the browser and thus allow the server to verify the browser
session. This requires only minor changes to the previously
described PHP server in order to generate the session key in
addition to the authentication tokens.

8.3 Performance analysis

In Table 1, we report timings for our implementations. Tim-
ings reported are an average of 10 timings, with standard
deviation. The total runtime of the protocol includes the net-
work latency for the communication fromacorporate internet
connection in the UKwhere the client machines were located
and a server in Germany. The average ping time on the net-
work from the laptop was 27.45ms (SD 5.24) and 280.5ms
(SD 16.75) from the mobile phone.

We report three different sets of timings: “cross-platform”
timings of the Firefox extension, using pure Javascript on the
client side; “native” timings of the Firefox extension, using
calls to OpenSSL for cryptographic operations on the client
side; and “Java” timings of the Android application, using
pure Java on the client side. All timings are performed against
a server, implemented in PHP with built-in GMP libraries,
accounting for 62.4ms (SD 7.9) in the total runtime.

The average total runtime of the Firefox extension from
when the user clicked “Login” after entering their password
until the protocol completedwas 306.68ms (SD 17.51) using
Javascript code, and 180.68ms (SD 13.44) using native code.
On the mobile device with Android OS, the average total
runtime from when the user clicked “Login” after entering
their password until the protocol completed was 2433.8ms
(SD 49.33).8

Our native cryptographic code is comparable to Dacosta
et al.’s reported performance of DVCert on laptops [18].
Our protocol implementation includes a variety of operations
beyond cryptographic computations, so the total runtime is
greater than the sum of cryptographic runtime and commu-
nication time. We do not compare the timings to the runtime
of password authentication based on an HTML form over
TLS since this introduces only a negligible overhead to the
overall page-load time.

8 Note that the slower performance, compared to the desktop applica-
tions, is due to a slow implementation ofNISTP-192 curve in the library
used, which requires about 600ms per multiplication on Android. At
the time of writing, SpongyCastle library was the only available ECC
library for Android.

123

Secure modular password authentication for the web using channel bindings 617

Fig. 6 Construction 3—protocol message diagram for TLSwith tag-based password-authenticated session key k for mobile browsers using tSOKE
and server’s domain name as a tag

Table 1 Average runtime in ms (± SD) of extension using cross-platform Javascript cryptographic code and native C (OpenSSL) cryptographic
code, Android application using a pure Java implementation

Operation Pure Javascript Native C Android (Java)

Client cryptographic computations 123.79 ± 11.13 7.79 ± 2.79 1828.1 ± 42.76

Total runtimea 306.68 ± 17.51 180.69 ± 13.44 2433.8 ± 49.33

Laptop Client Arch Linux, Kernel 3.18.6-1-ARCH, Firefox 35.0.1, OpenSSL 1.0.2-1, 2.4GHz Intel Core 2Duo (P8600), 8GB of RAM
Mobile Client Android 4.1.1 with Kernel 3.4.0, 1GHz MT6577, 1GB of RAM
Server Apache 2.4.12-2, PHP 5.6.6-1 with fpm, MariaDB 10.0.16-1, OpenSSL 1.0.2-1, 2.4GHz Intel Xeon (E5645) 1 Core, 1GB of RAM, KVM
simulated.
Network Corporate internet connection, ping time 27.45 ± 5.24ms (laptop), 280.5 ± 16.75ms (mobile phone)
a Includes network time and 62.4 ± 7.9 server cryptographic computations

8.4 Integration with HTTP/HTML

The exact form of integration with HTTP or HTML for
web applications is a question best left to the web stan-
dards community. Our protocol can be integrated in several
ways. It could be implemented as a new HTTP Authenti-
cation method [22], with protocol messages sent in HTTP
headers. It could also be implemented within the HTML,
with the initial tPAuth.ServerHello message delivered
as an HTML microdata object, and the remaining mes-
sages transmitted over asynchronous HTTP POST requests
with responses formatted for example as JSON messages
combined with standard HTTP cookie-based session man-
agement. For our prototypes, we chose the latter approach,
but the former approach would work equally well. Two ben-

efits of the HTML-based approach are that it avoids the
“logout problem” of HTTP authentication, in which there
is no standardized mechanism to terminate transmission of
HTTP authentication headers and that it is compatible with
cookie-based state management.

9 Discussion

Although PAKE protocols have been known in the litera-
ture since their invention in 1992, they have seen almost no
deployed adoption for user authentication in real-world pro-
tocols and implementations. One exception is the use of the
socialist millionaires’ protocol in the Off-the-Record Mes-
saging (OTR) protocol for private instant messaging [8].

123

618 M. Manulis et al.

Engler et al. [20] recently identified several challenges—
divided into two classes, user interface and deployment
challenges—to adopting cryptographic protocols for pass-
word authentication in the web. It has also been noted that the
myriad patents related to PAKE have had a negative impact
on adoption [2].

Deployment challenges Our modular architecture may ad-
dress certain deployment challenges. Engler et al. ask “What
is the appropriate layer in the networking stack to integrate
PAKE protocols?” They compare two proposed options:
TLS-SRP [42] and an earlier draft of the HTTPS-PAKE
approach of Oiwa et al. [38]. Adding SRP as a TLS cipher-
suite has benefits in that, once implemented, TLS-SRPallows
multiple applications to use the same TLS implementation.
But many drawbacks are identified by Engler et al., includ-
ing: (i) the need to integrate the application layer with the
TLS layer on both the client side (necessitating a complex
API between the TLS library and the web browser, for exam-
ple) and on the server side (which could negatively affect the
ability of HTTPS load balancers to terminate TLS connec-
tions and then hand them off to web application servers);
and (ii) the difficulty of supporting multiple authentication
realms within the same domain.

HTTPS-PAKE, running as anHTTP authenticationmech-
anism at the application layer, avoids both of these problems.
The version of HTTPS-PAKE reviewed by Engler et al.
did not have cryptographically strong binding between the
two protocols and thus could not prevent man-in-the-middle
attacks, but later revisions addressed that issue. Our modular
approach avoids the problems that Engler et al. identify for
TLS-SRP.

Our approach also better handles the transition from unau-
thenticated encrypted browsing to authenticated encrypted
browsing: a user may browse an HTTPS site for a while
before logging in; with TLS-SRP, a new TLS connection
is required (and the mechanism for triggering a new TLS
connection is unclear); it is much easier to trigger the authen-
tication at the application layer when it is required.

Our modular architecture is particularly simple to deploy
as it only requires the user to install a Firefox extension or
Android application and the server is a standalone PHP appli-
cation that can be used as authentication server in conjunction
with regular web applications.

User interface challenges Engler et al. [20] identify sev-
eral user interface challenges. We do not aim to fully solve
all of these challenges in our prototype, as demonstrating
a convincing solution to these challenges requires critical
examination by usability experts and appropriate user stud-
ies. Nonetheless, we have endeavored to follow some best
practices that may at least partially address the identified UI
challenges.

It is essential for the security of PAKE protocols that the
user always enter their password into a secure dialog box. If
the entry mechanism can be spoofed by an attacking website,
then the user could be tricked into entering their password
directly into a textfield controlled by the attacker. Thus, there
must be a trusted path to the dialog box in the UI. This is
usually achieved by placing the password entry visibly in the
parts of the window that make up the browser UI, such as the
location bar, rather than the page content. In our prototype,
we follow this practice by using Firefox’s notification bar. It
has been suggested that permitting users to customize noti-
fication bars helps to reduce spoofing attacks [19]. This has
been explored further in the Android application by allow-
ing the user to choose a private picture to personalize the
application (as discussed earlier).

The second and third of Engler et al.’s UI challenges
are about how to train users to use the system in the first
place, and how to communicate failures to users in a way
that does not encourage them to fall back on insecure meth-
ods. Both of these remain a challenge for usability designers,
though again, delivering failure notifications via Firefox’s
or Android’s trusted path for notifications may provide
some benefit. A procedure for resetting forgotten password
securely remains an open challenge both in practice and in
theory and is outside the scope of our goals. One particular
challenge worth mentioning here is that with the proposed
architecture the system is unable to distinguish between a
login error due to awrong username or password and an error
due to a wrong tag inside the PACCE protocol, i.e., an actual
attack. This may confuse users. To solve this problem, i.e., to
distinguish between an attack and a wrong username or pass-
word, an additional authentication token may be computed
similar to auth1 but without tag τ . This allows the server
to distinguish the two aforementioned cases and return an
appropriate error message to the client.

The final challenge noted by Engler et al. is on how to
allowwebsite designers to customize and brand the login dia-
logwithout compromising security; it has been suggested that
lack of customization and branding was a contributing factor
to the lack of adoption of HTTP basic and digest authen-
tication. Our prototype allows the server to provide a few
customizations to the login dialog box, including a logo and
some explanatory text, as shown in Figs. 4b and 5. While an
attacker could use stolen images, the benefit to the attacker is
minimal since the password entry will be cryptographically
protected.

Adoption challenges A final challenge for any new security
technology is facilitating widespread adoption. Such proto-
cols see a “network effect”: it is only useful for a client Alice
to use the technology if there are many Bobs who support
it, and vice versa. In the end, any secure password authenti-
cation technology will be most successful once built into all

123

Secure modular password authentication for the web using channel bindings 619

major mobile and desktop web browsers and web applica-
tion frameworks. In the meantime, the modular approach in
this paper is suitable for gradual deployment. For example,
an organization can internally standardize on the use of this
approach by deploying an extension or application to all of
its users without needing to wait for the browser vendor to
support the protocol. The more adoption via extension and
application, the more evidence for interest in the technol-
ogy, and the greater incentive for vendors to provide a native
implementation.

Acknowledgments Mark Manulis and Franziskus Kiefer acknowl-
edge support by the German Research Foundation (DFG), Project
PRIMAKE (MA 4957). Douglas Stebila acknowledges funding from
Australian Research Council (ARC) Discovery Project DP130104304.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abdalla, M., Bresson, E., Chevassut, O., Möller, B., Pointcheval,
D.: Provably secure password-based authentication in TLS. In: Lin,
F.C., Lee, D.T., Lin, B.S., Shieh, S., Jajodia, S. (eds.) ASIACCS
06, pp. 35–45. ACM Press, New York (2006)

2. Abdalla, M., Bresson, E., Chevassut, O., Möller, B., Pointcheval,
D.: Strong password-based authentication in TLS using the three-
party group Diffie–Hellman protocol. Int. J. Secur. Netw. 2(3/4),
284–296 (2007)

3. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Effi-
cient two-party password-based key exchange protocols in the UC
framework. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 335–351. Springer, Heidelberg (2008)

4. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based
authenticated key exchange in the three-party setting. In: Vaude-
nay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer,
Heidelberg (2005)

5. Abdalla, M., Pointcheval, D.: Simple password-based encrypted
key exchange protocols. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 191–208. Springer, Heidelberg (2005)

6. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M.,
Halderman, J.A., Heninger, N., Springall, D., Thomé, E., Valenta,
L., VanderSloot, B., Wustrow, E., Zanella-Béguelin, S., Zimmer-
mann, P.: Imperfect Forward Secrecy: How Diffie–Hellman Fails
in Practice (2015). https://weakdh.org/

7. AIST Research Center for Information Security: Mutual Authen-
tication Protocol for HTTP. https://www.rcis.aist.go.jp/special/
MutualAuth

8. Alexander, C., Goldberg, I.: Improved user authentication in Off-
the-Record Messaging. In: Yu, T. (ed.) ACMWorkshop on Privacy
in Electronic Society (WPES) 2007, pp. 41–47. ACM Press, New
York (2007)

9. Altman, J., Williams, N., Zhu, L.: Channel Bindings for TLS. RFC
5929 (Proposed Standard) (2010). http://www.ietf.org/rfc/rfc5929.
txt

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key
exchange secure against dictionary attacks. In: Preneel, B. (ed.)

EUROCRYPT2000. LNCS, vol. 1807, pp. 139–155. Springer,Hei-
delberg (2000)

11. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-
based protocols secure against dictionary attacks. In: 1992 IEEE
Symposium on Security and Privacy, pp. 72–84. IEEE Computer
Society Press (1992)

12. Bergsma, F., Dowling, B., Kohlar, F., Schwenk, J., Stebila, D.:
Multi-ciphersuite security of the Secure Shell (SSH) protocol. In:
Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14, pp. 369–381.
ACM Press, New York (2014)

13. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C.,
Kohlweiss, M., Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A
messy state of the union: taming the composite state machines
of TLS. In: 2015 IEEE Symposium on Security and Privacy, pp.
535–552. IEEE Computer Society Press (2015)

14. Bhargavan,K.,Delignat-Lavaud,A., Fournet, C., Pironti, A., Strub,
P.Y.: Triple handshakes and cookie cutters: breaking and fixing
authentication over TLS. In: 2014 IEEE Symposium on Security
and Privacy, pp. 98–113. IEEE Computer Society Press (2014)

15. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-
authenticated key exchange using Diffie–Hellman. In: Preneel, B.
(ed.)EUROCRYPT2000.LNCS, vol. 1807, pp. 156–171. Springer,
Heidelberg (2000)

16. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis
of the EMV channel establishment protocol. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 13, pp. 373–386. ACM
Press, New York (2013)

17. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Uni-
versally composable password-based key exchange. In: Cramer, R.
(ed.)EUROCRYPT2005.LNCS, vol. 3494, pp. 404–421. Springer,
Heidelberg (2005)

18. Dacosta, I., Ahamad, M., Traynor, P.: Trust no one else: detecting
MITM attacks against SSL/TLS without third-parties. In: Foresti,
S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol.
7459, pp. 199–216. Springer, Heidelberg (2012)

19. Dhamija, R., Tygar, J.D.: The battle against phishing: dynamic
security skins. In: Cranor, L.F., Zurko, M.E. (eds.) Symposium
on Usable Privacy and Security (SOUPS) 2005, pp. 77–88. ACM
Press, New York (2005)

20. Engler, J., Karlof, C., Shi, E., Song, D.: Is it too late for PAKE?
In: Web 2.0 Security and Privacy (W2SP) (2009). http://w2spconf.
com/2009/papers/s4p1.pdf

21. Fleischhacker, N., Manulis, M., Azodi, A.: A modular framework
formulti-factor authentication and key exchange. In: Security Stan-
dardisation Research (SSR 2014). LNCS, vol. 8893, pp. 190–214.
Springer (2014)

22. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,
Luotonen, A., Stewart, L.: HTTP Authentication: Basic and Digest
Access Authentication. RFC 2617 (Draft Standard) (1999). http://
www.ietf.org/rfc/rfc2617.txt, updated by RFC 7235

23. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegoti-
ation. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS
13, pp. 387–398. ACM Press, New York (2013)

24. Hao, F., Ryan, P.Y.A.: Password authenticated key exchange by
juggling. In: Security Protocols Workshop. LNCS, vol. 6615, pp.
159–171. Springer (2008)

25. IEEE P1363.2: Standard Specifications for Password-Based
Public-Key Cryptographic Techniques (2008). http://grouper.ieee.
org/groups/1363/passwdPK/

26. International Organization for Standardization (ISO): ISO/IEC
11770-4: Information Technology—Security Techniques—Key
Management—Part 4:MechanismsBased onWeak Secrets (2006).
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.
htm?csnumber=39723

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://weakdh.org/
https://www.rcis.aist.go.jp/special/MutualAuth
https://www.rcis.aist.go.jp/special/MutualAuth
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
http://w2spconf.com/2009/papers/s4p1.pdf
http://w2spconf.com/2009/papers/s4p1.pdf
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://grouper.ieee.org/groups/1363/passwdPK/
http://grouper.ieee.org/groups/1363/passwdPK/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39723
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39723

620 M. Manulis et al.

27. ITU-T X.1035: Password-Authenticated Key Exchange (PAK)
Protocol (2007). http://www.itu.int/rec/T-REC-X.1035-200702-I/
en

28. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Generic compilers
for authenticated key exchange. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 232–249. Springer, Heidelberg (2010)

29. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of
TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer,
Heidelberg (2012)

30. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH
and TLS-RSA in the standard model. Cryptology ePrint Archive,
Report 2013/367 (2013). http://eprint.iacr.org/2013/367

31. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS
protocol: a systematic analysis. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 429–448. Springer,
Heidelberg (2013)

32. Kwon, T.: Authentication and key agreement via memorable pass-
words. In: NDSS 2001. The Internet Society (2001)

33. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of
authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.)
ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg
(2007)

34. Manulis, M., Stebila, D., Denham, N.: Secure Modular Password
Authentication for the Web Using Channel Bindings. In: Security
Standardisation Research (SSR 2014). LNCS, vol. 8893, pp. 167–
189. Springer (2014)

35. National Institute of Standards and Technology: Recommended
Elliptic Curves for Federal Government Use (1999). http://csrc.
nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

36. Oiwa, Y., Takagi, H., Watanabe, H., Suzuki, H.: PAKE-based
mutual HTTP authentication for preventing phishing attacks. In:
Maarek, Y., Nejdl, W. (eds.) Proceedings of 18th International
WorldWideWebConference (WWW)2009, pp. 1143–1144.ACM
(2009). http://www2009.org/proceedings/pdf/p1143.pdf

37. Oiwa, Y., Watanabe, H., Takagi, H.: PAKE-based mutual HTTP
authentication for preventing phishing attacks (2009). http://arxiv.
org/abs/0911.5230

38. Oiwa, Y., Watanabe, H., Takagi, H., Kihara, B., Ioku, Y., Hayashi,
T.: Mutual authentication protocol for HTTP (2012), Internet-
Draft. http://tools.ietf.org/html/draft-oiwa-http-mutualauth-12

39. Rescorla, E.: KeyingMaterial Exporters for Transport Layer Secu-
rity (TLS). RFC 5705 (Proposed Standard) (2010). http://www.
ietf.org/rfc/rfc5705.txt

40. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The
emperor’s new security indicators. In: 2007 IEEE Symposium on
Security and Privacy, pp. 51–65. IEEE Computer Society Press
(2007)

41. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.:
Crying wolf: an empirical study of SSL warning effectiveness.
In: USENIX Security 2009 (2009). http://www.usenix.org/events/
sec09/tech/full_papers/sunshine.pdf

42. Taylor, D., Wu, T., Mavrogiannopoulos, N., Perrin, T.: Using the
Secure Remote Password (SRP) Protocol for TLS Authentica-
tion. RFC 5054 (Informational) (2007). http://www.ietf.org/rfc/
rfc5054.txt

43. Wu, T.D.: The Secure Remote Password protocol. In: NDSS’98.
The Internet Society (1998)

123

http://www.itu.int/rec/T-REC-X.1035-200702-I/en
http://www.itu.int/rec/T-REC-X.1035-200702-I/en
http://eprint.iacr.org/2013/367
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://www2009.org/proceedings/pdf/p1143.pdf
http://arxiv.org/abs/0911.5230
http://arxiv.org/abs/0911.5230
http://tools.ietf.org/html/draft-oiwa-http-mutualauth-12
http://www.ietf.org/rfc/rfc5705.txt
http://www.ietf.org/rfc/rfc5705.txt
http://www.usenix.org/events/sec09/tech/full_papers/sunshine.pdf
http://www.usenix.org/events/sec09/tech/full_papers/sunshine.pdf
http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc5054.txt

	Secure modular password authentication for the web using channel bindings
	Abstract
	1 Introduction
	1.1 Password-authenticated key exchange
	1.2 Running PAKE at the application layer
	1.3 Contributions

	2 Approach
	2.1 Building blocks
	2.1.1 Channel establishment protocols
	2.1.2 Tag-based password authentication and key exchange
	2.1.3 TLS channel bindings

	2.2 Three PACCE constructions

	3 Password-authenticated confidential channels
	4 PACCE construction 1: binding using CCE transcript
	4.1 Building block: CCE
	4.2 Building block: tPAuth
	4.3 Security analysis of PACCE construction 1
	4.4 Using tls-unique channel binding

	5 PACCE construction 2: binding using server public key
	5.1 Building block: ACCE (with key registration)
	5.2 Security analysis of PACCE construction 2
	5.3 Using tls-server-end-point channel binding

	6 PACCE construction 3: binding using server domain name
	6.1 Building block: tPAKE
	6.2 Building block: ACCE (without key registration)
	6.3 Security analysis of PACCE construction 3

	7 : A tag-based password authentication protocol with optional session key derivation
	8 PACCE implementations for desktop and mobile browsers
	8.1 PACCE implementation for desktop browsers
	8.1.1 Client: firefox extension
	8.1.2 Server: PHP application

	8.2 PACCE implementation for mobile browsers based on Android application
	8.2.1 Client: Android application
	8.2.2 Server: PHP application

	8.3 Performance analysis
	8.4 Integration with HTTP/HTML

	9 Discussion
	Acknowledgments
	References

