1,087 research outputs found

    Chameleon: a Blind Double Trapdoor Hash Function for Securing AMI Data Aggregation

    Get PDF
    Data aggregation is an integral part of Advanced Metering Infrastructure (AMI) deployment that is implemented by the concentrator. Data aggregation reduces the number of transmissions, thereby reducing communication costs and increasing the bandwidth utilization of AMI. However, the concentrator poses a great risk of being tampered with, leading to erroneous bills and possible consumer disputes. In this paper, we propose an end-to-end integrity protocol using elliptic curve based chameleon hashing to provide data integrity and authenticity. The concentrator generates and sends a chameleon hash value of the aggregated readings to the Meter Data Management System (MDMS) for verification, while the smart meter with the trapdoor key computes and sends a commitment value to the MDMS so that the resulting chameleon hash value calculated by the MDMS is equivalent to the previous hash value sent by the concentrator. By comparing the two hash values, the MDMS can validate the integrity and authenticity of the data sent by the concentrator. Compared with the discrete logarithm implementation, the ECC implementation reduces the computational cost of MDMS, concentrator and smart meter by approximately 36.8%, 80%, and 99% respectively. We also demonstrate the security soundness of our protocol through informal security analysis

    Towards secure end-to-end data aggregation in AMI through delayed-integrity-verification

    Get PDF
    The integrity and authenticity of the energy usage data in Advanced Metering Infrastructure (AMI) is crucial to ensure the correct energy load to facilitate generation, distribution and customer billing. Any malicious tampering to the data must be detected immediately. This paper introduces secure end-to-end data aggregation for AMI, a security protocol that allows the concentrators to securely aggregate the data collected from the smart meters, while enabling the utility back-end that receives the aggregated data to verify the integrity and data originality. Compromise of concentrators can be detected. The aggregated data is protected using Chameleon Signatures and then forwarded to the utility back-end for verification, accounting, and analysis. Using the Trapdoor Chameleon Hash Function, the smart meters can periodically send an evidence to the utility back-end, by computing an alternative message and a random value (m', r) such that m' consists of all previous energy usage measurements of the smart meter in a specified period of time. By verifying that the Chameleon Hash Value of (m', r) and that the energy usage matches those aggregated by the concentrators, the utility back-end is convinced of the integrity and authenticity of the data from the smart meters. Any data anomaly between smart meters and concentrators can be detected, thus indicating potential compromise of concentrators

    Techniques, Taxonomy, and Challenges of Privacy Protection in the Smart Grid

    Get PDF
    As the ease with which any data are collected and transmitted increases, more privacy concerns arise leading to an increasing need to protect and preserve it. Much of the recent high-profile coverage of data mishandling and public mis- leadings about various aspects of privacy exasperates the severity. The Smart Grid (SG) is no exception with its key characteristics aimed at supporting bi-directional information flow between the consumer of electricity and the utility provider. What makes the SG privacy even more challenging and intriguing is the fact that the very success of the initiative depends on the expanded data generation, sharing, and pro- cessing. In particular, the deployment of smart meters whereby energy consumption information can easily be collected leads to major public hesitations about the tech- nology. Thus, to successfully transition from the traditional Power Grid to the SG of the future, public concerns about their privacy must be explicitly addressed and fears must be allayed. Along these lines, this chapter introduces some of the privacy issues and problems in the domain of the SG, develops a unique taxonomy of some of the recently proposed privacy protecting solutions as well as some if the future privacy challenges that must be addressed in the future.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111644/1/Uludag2015SG-privacy_book-chapter.pd
    • …
    corecore