5,201 research outputs found

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    OS2: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain

    Get PDF
    © 2017 Pervez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search (OS2) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, OS2 ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables OS2 to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of OS2 is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii
    • …
    corecore