1,250 research outputs found

    Immunophilins: new biomarkers and therapeutic targets for neurodegenerative diseases

    Get PDF
    Immunophilins (IP) are receptors for immunosuppressive drugs like cyclosporin A, FK506, rapamycin and their analogs, which are collectively referred to as "immunophilin ligands" (IPL). The receptors for FK506 belong to the family of FK506- binding proteins (FKBP). Previous studies showed that FK506 augments neuronal growth in vitro. In animal models, the drug promotes morphologic and functional recovery following neuronal lesioning. Here we show for the first time that FK506 has neurotrophic effects in human brain primary cultures. Our data support a possible use of FK506 and its analogues in the treatment of neurodegenerative disorders and as adjuvants in neural tissue transplants. The effect of the drug in vivo, in patients, will ultimately depend on the presence and distribution of IP receptors in the normal and degenerating human brain.FKBP12, the archetypal member of the FKBP family, plays a role in protein folding, protein complexes assembly and intracellular calcium release. Crush injury of facial or sciatic nerves in rat leads to markedly increased FKBP12 levels in the respective nerve nuclei in parallel with nerve regeneration. The presence of FKBP IP has never been demonstrated in the human brain. Using light and immunofluorescent microscopy, laser confocal microscopy and western blotting, we studied FKBP12 expression in a set of archival brain material from Parkinson's disease, Alzheimer's disease, dementia with Lewy bodies, encephalitic and non- encephalitic HIV- positive patients and age matched controls. We show that FKBP12 is present in the human brain, predominantly in neurons. Its levels and distribution are altered in the mid- frontal cortex, deep gray matter and midbrain of patients with neurodegenerative diseases. Moreover, it colocalizes with markers of pathology (Lewy bodies, neurofibrillary tangles and neuritic plaques) in areas of neurodegeneration. Disease- specific and region- specific changes are evident. Alterations in basal ganglia FKBP12 levels are also observed in MPTP- treated primates in association with dopaminergic loss (evidenced using PET functional imaging). We propose that the altered expression and distribution of FKBP12 is linked to abnormal protein folding and axonal transport. It may also reflect a compensatory regenerative response that renders immunophilins promising diagnostic and therapeutic targets

    Computational analysis of innate and adaptive immune responses

    Get PDF
    Both innate and adaptive immune processes rely on the activation of differentiated haematopoietic stem cell lineages to affect an appropriate response to pathogens. This thesis employs a largely network biology focused approach to better understand the specificity of immune cell responses in two distinct cases of pathogenic challenge. In the context of adaptive immunity, I studied the transcriptional responses of T cells during Graft-versus-Host Disease (GvHD). GvHD represents one of the major complications to arise following allogeneic hematopoietic stem cell transplantation and yet why only particular organs are damaged as a result of this pathology is still unclear. To investigate whether key GvHD transcriptional signatures seen in effector CD8+ T cells compared to naïve T cells are triggered in target organs or the secondary lymphoid organs, a module-based association test was developed to combine the output of gene clustering algorithms with that of differential expression analysis. This methodology significantly aided the identification of skin specific effector T cell transcriptional programs believed to drive murine GvHD pathogenesis at this site. Turning to the innate immune response, I investigated the transcriptional profiles of resting and activated macrophages in the setting of Tuberculosis (TB), the second leading cause of death from infectious disease worldwide. Regression-based analyses and clustering of macrophage expression data provided insight into the variations in gene expression profiles of naïve macrophages compared to those infected with Mycobacterium tuberculosis (MTB) or a vaccine strain of mycobacteria (BCG). The availability of genotype data as part of the macrophage dataset facilitated an expression quantitative trait loci (eQTL) study which highlighted a novel association between the cytoskeleton gene BCAR1 and TB risk, together with a previously undescribed trans-eQTL module specific to MTB infected macrophages. Potential genetic variants impacting expression of the aforementioned GvHD specific T cell transcriptional signatures were additionally investigated using external trans-eQTL datasets

    A Novel Methodology for Isolating Broadly Neutralizing HIV-1 Human Monoclonal Antibodies

    Get PDF
    Abstract also published in AIDS Research and Human Retroviruses. November 2013, 29(11): A-53. doi:10.1089/aid.2013.1500Poster presentationpublished_or_final_versio

    The role of HIV-1 transmitted/founder virus characteristics in driving pathogenesis

    Get PDF
    HIV-1 transmission is associated with a severe bottleneck in which a limited number of variants from genetically diverse quasispecies establish infection. The IAVI protocol C cohort of discordant couples, female sex workers, other heterosexuals and men who have sex with men (MSM) present varying risks of HIV infection, diverse HIV-1 subtypes and present a unique opportunity to characterize transmitted/founder viruses (TFv) where disease outcome is known. To identify the TFv, the HIV-1 repertoire of 38 MSM was sequenced close to transmission (median 21dpi) and assessment of multivariant infection, subtype and genetic polymorphisms done. Patient derived gag genes were cloned into a NL4.3 provirus to generate chimeric viruses which were characterised for replicative capacity (RC) and mechanism of spread between cells. Finally, an evaluation of how the virus characteristics that were predictors of disease progression modified the immune response at both acute and chronic HIV-1 infection was done. There was higher incidence of multivariant infection compared with previously described heterosexual cohorts. TFv predictors of CD4 T-cell decline and set-point viral load included multivariant infection, subtype, drug resistance mutations and RC. A link was identified between these characteristics and both chronic immune activation and rapid CD4+ T cell decline except in multivariant infection where perturbations were restored after control of viremia. The cell entry and CD4+ T cell depletion mechanisms by high RC TFv overlapped with those involved in cell-cell transmission but not cell free spread and involved increased expression of RNA that encodes proteins involved in apoptosis, autophagy and necrosis. Strategies aimed at mitigating persistent immune activation could contribute toward improving HIV-1 prognosis and research presented in this thesis suggests that this may involve strategies that sieve out high RC TFv and tighten the stringency of the transmission bottleneck. Furthermore, the sequences and chimeric viruses provide a useful resource in the field of immunogen design, for their utility in designing TFv peptide sets and for use in functional assays to probe effective immune responses against TFv.Open Acces

    Elicitation of broadly neutralizing HIV-1 antibodies by guiding the immune responses using primary and secondary immunogens

    Get PDF
    Abstract also published in AIDS Research and Human Retroviruses. November 2013, 29(11): A-44. doi:10.1089/aid.2013.1500Poster presentationpublished_or_final_versio

    Getting a Tight Grip on DNA: Optimizing Zinc Fingers for Efficient ZFN-Mediated Gene Editing: A Dissertation

    Get PDF
    The utility of a model organism for studying biological processes is closely tied to its amenability to genome manipulation. Although tools for targeted genome engineering in mice have been available since 1987, most organisms including zebrafish have lacked efficient reverse genetic tools, which has stymied their broad implementation as a model system to study biological processes. The development of zinc finger nucleases (ZFNs) that can create double-strand breaks at desired sites in a genome has provided a universal platform for targeted genome modification. ZFNs are artificial restriction endonucleases that comprise of an array of 3- to 6-C2H2-zinc finger DNA-binding domains fused with the dimeric cleavage domain of the type IIs endonuclease FokI. C2H2-zinc fingers are the most common, naturally occurring DNA-binding domain, and their specificity can be engineered to recognize a variety of DNA sequences providing a strategy for targeting the appended nuclease domain to desired sites in a genome. The utility of ZFNs for gene editing relies on their activity and precision in vivo both of which depend on the generation of ZFPs that bind desired target sites high specificity and affinity. Although various methods are available that allow construction of ZFPs with novel specificities, ZFNs assembled using existing approaches often display negligible in vivo activity, presumably resulting from ZFPs with either low affinity or suboptimal specificity. A root cause of this deficiency is the presence of interfering interactions at the finger-finger interface upon assembly of multiple fingers. In this study we have employed bacterial-one-hybrid (B1H)-based selections to identify two-finger zinc finger units (2F-modules) containing optimized interface residues that can be combined with published finger archives to rapidly yield ZFNs that can target more than 95% of the zebrafish and human protein-coding genes while maintaining a success rate higher than that of ZFNs constructed using available methods. In addition to genome engineering in model organisms, this advancement in ZFN design will aid in the development of ZFN-based therapeutics. In the process of creating this archive, we have undertaken a broader study of zinc finger specificity to better understand fundamental aspects of DNA recognition. In the process we have created the largest protein-DNA interaction dataset for zinc fingers to be described that will facilitate the development of better predictive models of recognition. Ultimately, these predictive models would enable the rational design of synthetic zinc finger proteins for targeted gene regulation or genomic modification, and the prediction of genomic binding sites for naturally occurring zinc finger proteins for the construction of more accurate gene regulatory networks

    91st Annual Meeting of the Virginia Academy of Science: Proceedings

    Get PDF
    Proceedings of the 91st Annual Meeting of the Virginia Academy of Science, held at Virginia Polytechnic Institute and State University, May 22-24, 2013

    Cxcr2 Macromolecular Complex In Pancreatic Cancer: A Potential Therapeutic Target In Tumor Growth

    Get PDF
    The signaling mediated by the chemokine receptor CXC chemokine receptor 2 (CXCR2) plays an important role in promoting the progression of many cancers, including pancreatic cancer, one of the most lethal human malignancies. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl termini, which might interact with potential PDZ scaffold/adaptor proteins. We have previously reported that CXCR2 PDZ motif-mediated protein interaction is an important regulator for neutrophil functions. Here, using a series of biochemical assays, we demonstrate that CXCR2 is physically coupled to its downstream effector phospholipase C-β3 (PLC-β3) that is mediated by PDZ scaffold protein Na(+)/H(+) exchange regulatory factor 1 (NHERF1) into a macromolecular signaling complex both in vitro and in pancreatic cancer cells. We also observe that disrupting the CXCR2 complex, by gene delivery or peptide delivery of exogenous CXCR2 C-tail, significantly inhibits the biologic functions of pancreatic cancer cells (i.e., proliferation and invasion) in a PDZ motif-dependent manner. In addition, using a human pancreatic tumor xenograft model, we show that gene delivery of CXCR2 C-tail sequence (containing the PDZ motif) by adeno-associated virus type 2 viral vector potently suppresses human pancreatic tumor growth in immunodeficient mice. In summary, our results suggest the existence of a physical and functional coupling of CXCR2 and PLC-β3 mediated through NHERF1, forming a macromolecular complex that is critical for efficient and specific CXCR2 signaling in pancreatic cancer progression. Disrupting this CXCR2 complex could represent a novel and effective treatment strategy against pancreatic cancer

    Alfaviiruse mittestruktuurne proteaas ja tema liitvalgust substraat: täiuslikult korraldatud kooselu reeglid

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Alfaviirused (sugukond Togaviridae) on artriiti ja entsefaliiti põhjustavad RNA genoomsed viirused. Nende paljunemise strateegia aluseks on viiruse replikaasi valkude süntees ühe nn. mittestruktuurse eelvalgu P1234 kujul ning selle ajaliselt reguleeritud lõikamine valmis valkudeks nsP2 proteaasi abil. Käesoleva väitekirja aluseks olevad uurimistööd viisid nsP2 substraat-spetsiifilisust tagavate mehhanismide väljaselgitamiseni; muu hulgas kirjeldati uudset proteolüütiliste lõikamiste regulatsioonimehhanismi, mis põhineb liitvalgu erinevate regioonide vahelisel „suhtlemisel“ viiruse replikatsiooni kompleksi moodustamise käigus. Sellest saab järeldada, et P1234 lõikamise ajaline regulatsioon sõltub otseselt replikatsioonikompleksi konfiguratsioonidest, millised omakorda on määratud selle komponentide vaheliste interaktsioonide poolt. Seega tõuseb viiruse nsP2 proteaas esile kui keerulise signaalvõrgustiku keskne element, mille roll viirus infektsiooni regulatsioonis seisneb replikatsiooniga kaasnevate sündmuste „jälgimises“ ja nendele reageerimises. Viimane põhineb sellel, et kui viiruse paljunemine jõuab kindla vahe-etapini, siis kaasneb sellega lõikamiskohtade ja/või muude oluliste struktuuride „esitlemine“ proteaasile, mis reageerib toimunud muudatustele lokaalse signaalülekande, mis lõppkokkuvõttes viib replikaasi kompleksi struktuuri järjestikulistele muudatustele, käivitamisega. Kokkuvõttes, tõid läbiviidud uurimised välja asjaolu, et lisaks varem teada olnud lõikamisjärjestuste äratundmisele, omab ka makromolekulaarsete struktuuride moodustamine viiruse valkude poolt olulist (ja mitmel juhul isegi määravat) rolli viiruse proteaasi töö reguleerimisel. Veel enam, eeldati, et seesugune mitmetahuline regulatsioon võib olla paljukomponentsete proteolüütiliste süsteemide üldine omadus. Kirjeldatud avastused ja nende lahtimõtestamine omavad olulist rolli uurimistöödele, mille eesmärgiks on alfaviiruste paljunemist takistavate lähenemiste väljatöötamine. Nii võib saadud tulemuste põhjal järeldada, et lisaks proteaasi aktiivsuse otsesele mõjutamisele võib viiruse replikatsiooni takistada ka mõjutades proteolüüsi regulatsiooni tagavaid molekulide vahelised seoseid.Alphaviruses from the Togaviridae family are RNA viruses that may cause arthritic syndroms and encephalitis. The alphavirus replication strategy relies on the production of replicase proteins initially in the form of non-structural (ns) polyprotein precursor P1234, which during the course of replication becomes proteolytically processed by the virus-encoded nsP2 protease in a temporally regulated manner. The studies that constitute the basis of this thesis led to identification of the requirements for substrate specificity of nsP2 protease and revealed novel mechanism for the regulation of processing based on the specific communication between distant parts of the viral polyprotein brought together during assembly of replication complex. It was concluded that the order of alphaviral ns-polyprotein processing is mostly dependent on the configuration of the replication complex imposed by intermolecular interactions meant to guarantee timely cleavages. The alphaviral protease therefore emerges as an integral part of the sophisticated signaling mechanism, in which the regulatory task of the protease consists of monitoring the succession and completion of the events of viral infection. Once the respective replication status-induced conformational changes within replicase allow the presentation of the scissile bond and/or other essential determinants of substrate recognition like exosites, the local protease signaling is initiated, which apparently leads to further reconfiguration of the viral replication complex. Combined, the studies unveiled the decisive role played by the macromolecular assembly-dependent component of substrate recognition in addition to the sequence-dependent component, the combination of which may be expected to constitute the basis of regulation in multi-site proteolytic systems in general. Described findings and their interpretations are expected to provide with essential grounds and directions for further studies on the restriction of alphaviral replication through affecting the center of viral proteolytic activity or via intervention with its regulation by targeting intramolecular interactions
    corecore