702 research outputs found

    Sampled-data design for robust control of a single qubit

    Full text link
    This paper presents a sampled-data approach for the robust control of a single qubit (quantum bit). The required robustness is defined using a sliding mode domain and the control law is designed offline and then utilized online with a single qubit having bounded uncertainties. Two classes of uncertainties are considered involving the system Hamiltonian and the coupling strength of the system-environment interaction. Four cases are analyzed in detail including without decoherence, with amplitude damping decoherence, phase damping decoherence and depolarizing decoherence. Sampling periods are specifically designed for these cases to guarantee the required robustness. Two sufficient conditions are presented for guiding the design of unitary control for the cases without decoherence and with amplitude damping decoherence. The proposed approach has potential applications in quantum error-correction and in constructing robust quantum gates.Comment: 33 pages, 5 figures, minor correction

    Arbitrary multimode Gaussian operations on mechanical cluster states

    Get PDF
    We consider opto- and electro-mechanical quantum systems composed of a driven cavity mode interacting with a set of mechanical resonators. It has been proposed that the latter can be initialized in arbitrary cluster states, including universal resource states for Measurement Based Quantum Computation (MBQC). We show that, despite the unavailability in this set-up of direct measurements over the mechanical resonators, computation can still be performed to a high degree of accuracy. In particular, it is possible to indirectly implement the measurements necessary for arbitrary Gaussian MBQC by properly coupling the mechanical resonators to the cavity field and continuously monitoring the leakage of the latter. We provide a thorough theoretical analysis of the performances obtained via indirect measurements, comparing them with what is achievable when direct measurements are instead available. We show that high levels of fidelity are attainable in parameter regimes within reach of present experimental capabilities.Comment: 12 pages, 8 figure

    The Generalized Lyapunov Theorem and its Application to Quantum Channels

    Get PDF
    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the "Lyapunov direct method". First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in Open Quantum Systems and Quantum Information, namely Quantum Channels. In this context we also discuss the relations between mixing and ergodicity (i.e. the property that there exist only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.Comment: 13 pages, 3 figure

    Symmetrizing quantum dynamics beyond gossip-type algorithms

    Get PDF
    Recently, consensus-type problems have been formulated in the quantum domain. Obtaining average quantum consensus consists in the dynamical symmetrization of a multipartite quantum system while preserving the expectation of a given global observable. In this paper, two improved ways of obtaining consensus via dissipative engineering are introduced, which employ on quasi local preparation of mixtures of symmetric pure states, and show better performance in terms of purity dynamics with respect to existing algorithms. In addition, the first method can be used in combination with simple control resources in order to engineer pure Dicke states, while the second method guarantees a stronger type of consensus, namely single-measurement consensus. This implies that outcomes of local measurements on different subsystems are perfectly correlated when consensus is achieved. Both dynamics can be randomized and are suitable for feedback implementation.Comment: 11 pages, 3 figure

    Strange attractor simulated on a quantum computer

    Full text link
    We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.Comment: latex 4 pages, 4 figures, research at http://www.quantware.ups-tlse.fr, one fig and discussion adde
    corecore