2 research outputs found

    Needle and Biopsy Robots: a Review

    Get PDF
    Purpose of the review Robotics is a rapidly advancing field, and its introduction in healthcare can have a multitude of benefits for clinical practice. Especially, applications depending on the radiologist\u2019s accuracy and precision, such as percutaneous interventions, may profit. This paper provides an overview of recent robot-assisted percutaneous solutions. Recent findings Percutaneous interventions are relatively simple and the quality of the procedure increases a lot by introducing robotics due to the improved accuracy and precision. The success of the procedure is heavily dependent on the ability to merge pre- and intraoperative images, as an accurate estimation of the current target location allows to exploit the robot\u2019s capabilities. Summary Despite much research, the application of robotics in some branches of healthcare is not commonplace yet. Recent advances in percutaneous robotic solutions and imaging are highlighted, as they will pave the way to more widespread implementation of robotics in clinical practic

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons
    corecore