57,609 research outputs found

    Verification, Analytical Validation, and Clinical Validation (V3): The Foundation of Determining Fit-for-Purpose for Biometric Monitoring Technologies (BioMeTs)

    Get PDF
    Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital medicine field

    A conceptual framework and protocol for defining clinical decision support objectives applicable to medical specialties.

    Get PDF
    BackgroundThe U.S. Centers for Medicare and Medicaid Services established the Electronic Health Record (EHR) Incentive Program in 2009 to stimulate the adoption of EHRs. One component of the program requires eligible providers to implement clinical decision support (CDS) interventions that can improve performance on one or more quality measures pre-selected for each specialty. Because the unique decision-making challenges and existing HIT capabilities vary widely across specialties, the development of meaningful objectives for CDS within such programs must be supported by deliberative analysis.DesignWe developed a conceptual framework and protocol that combines evidence review with expert opinion to elicit clinically meaningful objectives for CDS directly from specialists. The framework links objectives for CDS to specialty-specific performance gaps while ensuring that a workable set of CDS opportunities are available to providers to address each performance gap. Performance gaps may include those with well-established quality measures but also priorities identified by specialists based on their clinical experience. Moreover, objectives are not constrained to performance gaps with existing CDS technologies, but rather may include those for which CDS tools might reasonably be expected to be developed in the near term, for example, by the beginning of Stage 3 of the EHR Incentive program. The protocol uses a modified Delphi expert panel process to elicit and prioritize CDS meaningful use objectives. Experts first rate the importance of performance gaps, beginning with a candidate list generated through an environmental scan and supplemented through nominations by panelists. For the highest priority performance gaps, panelists then rate the extent to which existing or future CDS interventions, characterized jointly as "CDS opportunities," might impact each performance gap and the extent to which each CDS opportunity is compatible with specialists' clinical workflows. The protocol was tested by expert panels representing four clinical specialties: oncology, orthopedic surgery, interventional cardiology, and pediatrics

    Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy

    Get PDF
    Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak −48, −18, −14; ZE = 5.65, pFWEcorr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = −0.77, p < 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population

    Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: Insights from the canadian biomarker integration network in depression

    Get PDF
    Subsequent to global initiatives in mapping the human brain and investigations of neurobiological markers for brain disorders, the number of multi-site studies involving the collection and sharing of large volumes of brain data, including electroencephalography (EEG), has been increasing. Among the complexities of conducting multi-site studies and increasing the shelf life of biological data beyond the original study are timely standardization and documentation of relevant study parameters. We presentthe insights gained and guidelines established within the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND). CAN-BIND is a multi-site, multi-investigator, and multiproject network supported by the Ontario Brain Institute with access to Brain-CODE, an informatics platform that hosts a multitude of biological data across a growing list of brain pathologies. We describe our approaches and insights on documenting and standardizing parameters across the study design, data collection, monitoring, analysis, integration, knowledge-translation, and data archiving phases of CAN-BIND projects. We introduce a custom-built EEG toolbox to track data preprocessing with open-access for the scientific community. We also evaluate the impact of variation in equipment setup on the accuracy of acquired data. Collectively, this work is intended to inspire establishing comprehensive and standardized guidelines for multi-site studies
    corecore