7 research outputs found

    Non-null Infinitesimal Micro-steps: a Metric Temporal Logic Approach

    Full text link
    Many systems include components interacting with each other that evolve with possibly very different speeds. To deal with this situation many formal models adopt the abstraction of "zero-time transitions", which do not consume time. These however have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis to introduce a notion of micro- and macro-steps in an extension of the TRIO metric temporal logic, called X-TRIO. We use X-TRIO to provide a formal semantics and an automated verification technique to Stateflow-like notations used in the design of flexible manufacturing systems.Comment: 20 pages, 2 figures, submitted to the conference "FORMATS: Formal Modelling and Analysis of Timed Systems" 201

    Deriving real-time action systems with multiple time bands using algebraic reasoning

    Get PDF
    The verify-while-develop paradigm allows one to incrementally develop programs from their specifications using a series of calculations against the remaining proof obligations. This paper presents a derivation method for real-time systems with realistic constraints on their behaviour. We develop a high-level interval-based logic that provides flexibility in an implementation, yet allows algebraic reasoning over multiple granularities and sampling multiple sensors with delay. The semantics of an action system is given in terms of interval predicates and algebraic operators to unify the logics for an action system and its properties, which in turn simplifies the calculations and derivations

    A temporal logic for micro- and macro-step-based real-time systems: Foundations and applications

    Get PDF
    Many systems include components interacting with each other that evolve at possibly very different speeds. To deal with this situation many formal models adopt the abstraction of “zero-time transitions”, which do not consume time. These, however, have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis and pairs them with the traditional “next” operator of temporal logic to introduce a notion of micro- and macro-steps; our approach is enacted in an extension of the TRIO metric temporal logic, called X-TRIO. We study the expressiveness and decidability properties of the new logic. Decidability is achieved through translation of a meaningful subset of X-TRIO into Linear Temporal Logic, a traditional way to support automated verification. We illustrate the usefulness and the generality of our approach by applying it to provide a formal semantics of timed Petri nets, which allows for their automated verification. We also give an overview of a formal semantics of Stateflow/Simulink diagrams, defined in terms of X-TRIO, which has been applied to the automated verification of a robotic cell

    Prefix and Projection onto State in Duration Calculus

    Get PDF
    In this paper we study a new operator of projection onto state and the prefix operator in the extension of DC by quantifiers over state and a polyadic least fixed point operator. We give comprehensive lists of axioms and rules which enable deduction in the extension of HDC by the new operators. Our axioms can be used as reduction rules which enable the elimination of the new operators from formulas which commence in specifications of the proposed kind. This entails that there is a big fragment of HDC where the prefix and projection-onto-state operators can be regarded as derived operators and the decidability of certain subfragments of this big fragment is preserved in the presence of the new operators
    corecore