104,665 research outputs found

    Complexity in Prefix-Free Regular Languages

    Full text link
    We examine deterministic and nondeterministic state complexities of regular operations on prefix-free languages. We strengthen several results by providing witness languages over smaller alphabets, usually as small as possible. We next provide the tight bounds on state complexity of symmetric difference, and deterministic and nondeterministic state complexity of difference and cyclic shift of prefix-free languages.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Around Kolmogorov complexity: basic notions and results

    Full text link
    Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. There are several textbooks and monographs devoted to this theory where one can find the detailed exposition of many difficult results as well as historical references. However, it seems that a short survey of its basic notions and main results relating these notions to each other, is missing. This report attempts to fill this gap and covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness (Martin-L\"of randomness, Mises--Church randomness), effective Hausdorff dimension. We prove their basic properties (symmetry of information, connection between a priori probability and prefix complexity, criterion of randomness in terms of complexity, complexity characterization for effective dimension) and show some applications (incompressibility method in computational complexity theory, incompleteness theorems). It is based on the lecture notes of a course at Uppsala University given by the author

    Operations on Automata with All States Final

    Full text link
    We study the complexity of basic regular operations on languages represented by incomplete deterministic or nondeterministic automata, in which all states are final. Such languages are known to be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Existential Second-Order Logic Over Graphs: A Complete Complexity-Theoretic Classification

    Get PDF
    Descriptive complexity theory aims at inferring a problem's computational complexity from the syntactic complexity of its description. A cornerstone of this theory is Fagin's Theorem, by which a graph property is expressible in existential second-order logic (ESO logic) if, and only if, it is in NP. A natural question, from the theory's point of view, is which syntactic fragments of ESO logic also still characterize NP. Research on this question has culminated in a dichotomy result by Gottlob, Kolatis, and Schwentick: for each possible quantifier prefix of an ESO formula, the resulting prefix class either contains an NP-complete problem or is contained in P. However, the exact complexity of the prefix classes inside P remained elusive. In the present paper, we clear up the picture by showing that for each prefix class of ESO logic, its reduction closure under first-order reductions is either FO, L, NL, or NP. For undirected, self-loop-free graphs two containment results are especially challenging to prove: containment in L for the prefix R1Rnxy\exists R_1 \cdots \exists R_n \forall x \exists y and containment in FO for the prefix Mxy\exists M \forall x \exists y for monadic MM. The complex argument by Gottlob, Kolatis, and Schwentick concerning polynomial time needs to be carefully reexamined and either combined with the logspace version of Courcelle's Theorem or directly improved to first-order computations. A different challenge is posed by formulas with the prefix Mxy\exists M \forall x\forall y: We show that they express special constraint satisfaction problems that lie in L.Comment: Technical report version of a STACS 2015 pape

    Relating and contrasting plain and prefix Kolmogorov complexity

    Get PDF
    In [3] a short proof is given that some strings have maximal plain Kolmogorov complexity but not maximal prefix-free complexity. The proof uses Levin's symmetry of information, Levin's formula relating plain and prefix complexity and Gacs' theorem that complexity of complexity given the string can be high. We argue that the proof technique and results mentioned above are useful to simplify existing proofs and to solve open questions. We present a short proof of Solovay's result [21] relating plain and prefix complexity: K(x)=C(x)+CC(x)+O(CCC(x))K (x) = C (x) + CC (x) + O(CCC (x)) and C(x)=K(x)KK(x)+O(KKK(x))C (x) = K (x) - KK (x) + O(KKK (x)), (here CC(x)CC(x) denotes C(C(x))C(C(x)), etc.). We show that there exist ω\omega such that lim infC(ω1ωn)C(n)\liminf C(\omega_1\dots \omega_n) - C(n) is infinite and lim infK(ω1ωn)K(n)\liminf K(\omega_1\dots \omega_n) - K(n) is finite, i.e. the infinitely often C-trivial reals are not the same as the infinitely often K-trivial reals (i.e. [1,Question 1]). Solovay showed that for infinitely many xx we have xC(x)O(1)|x| - C (x) \le O(1) and x+K(x)K(x)log(2)xO(log(3)x)|x| + K (|x|) - K (x) \ge \log^{(2)} |x| - O(\log^{(3)} |x|), (here x|x| denotes the length of xx and log(2)=loglog\log^{(2)} = \log\log, etc.). We show that this result holds for prefixes of some 2-random sequences. Finally, we generalize our proof technique and show that no monotone relation exists between expectation and probability bounded randomness deficiency (i.e. [6, Question 1]).Comment: 20 pages, 1 figur
    corecore